• Title/Summary/Keyword: Lithium-ion Cell

Search Result 278, Processing Time 0.022 seconds

Electrochemical Reaction Mechanism with Variation of Pyrite (FeS2) Particle Size for Thermal Battery (열전지용 황철석(FeS2) 입자크기 변화에 따른 전기화학반응 메커니즘)

  • Park, Byeong June
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.4
    • /
    • pp.246-252
    • /
    • 2017
  • Pulverized $FeS_2$ (pyrite) gives different discharge test results with as-received $FeS_2$ electrodes. The as-received $FeS_2$ electrode shows three voltage plateaus during the discharge test. However, the ball-milled $FeS_2$ electrode shows two voltage plateaus. To interpret this result, the effect of $FeS_2$ particle size on electrochemical reactions is investigated by unit cell discharge tests, SEM and XRD. As a result, it is found that the transition reaction product ($Li_2+xFe+xS_2$) of $FeS_2$ explains the difference. The as-received $FeS_2$ reacts according to three reaction steps ($FeS_2{\rightarrow}Li_3Fe_2S_4{\rightarrow}Li_2+xFe_1+xS_2{\rightarrow}LiFe_2S_4$). However, ball-milled $FeS_2$ reacts without the $Li_2+xFe_1+xS_2$ stage. In this study, this result is explained by the difference in electrochemical reaction mechanism. The as-received $FeS_2$ has a larger radius than the ball-milled $FeS_2$. Therefore, the lithium ion has to diffuse into the $FeS_2$ unreacted core, and $Li_2+xFe_1+xS_2$, the transition reaction product of as-received $FeS_2$, is formed during this stage.

Synchronous Buck Converter with High Efficiency and Low Ripple Voltage for Mobile Applications (고 효율 저 리플 전압 특성을 갖는 모바일용 동기 형 벅 컨버터)

  • Yim, Chang-Jong;Kim, Jun-Sik;Park, Shi-Hong
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.319-323
    • /
    • 2011
  • In this paper presents a new model of dual-mode synchronous buck converter with dynamic control for mobile applications was proposed. The proposed circuit can operate at 2.5MHz with supply voltage 2.5V to 5V for low ripple and minimum inductor and capacitor size, which is suitable for single-cell lithium-ion battery supply mobile applications. For high efficiency, the proposed circuit adopts synchronous type and dynamic control. The proposed circuit is designed by using the device parameter of TSMC 0.18um BCD process and the performance is evaluated by Cadence spectre. Experimental board level results show the maximum conversion efficiency is 96% at 100mA load current.

Effect of Ti substitution on electrochemical properties $Li_{0.44}MnO_2$ synthesized by solid state reaction (고상반응법에 의해 제조된 $Li_{0.44}MnO_2$의 전기화학적 성질에 미치는 Ti 치환의 영향)

  • ;Marca M. Doeff;Abraham Anapolsky;Thomas J. Richardson
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.5
    • /
    • pp.362-366
    • /
    • 2000
  • $Li_{0.44}MnO_2$cathode material has high reversibility during lithium insertion processes and is not easily damaged through over-charging or over-discharging. $Mn_2O_3$is often present as an impurity phase, and reduce the electrochemical capacity of electrode because this phase is electrochemically inert. Adding of excess NaOH reduced the $Mn_2O_3$to the content under undetectable by X-ray diffraction. Because the capacity can be increased in the cathode materials with larger unit cell, some of the manganese was replaced with titanium having larger ion size, and powders with the formula $Li_{0.44}T_{iy}Mn_{1-y}O_2$(where y = 0.11, 0.22, 0.33, 0.44, and 0.55) was synthesized and characterized. A maximum reversible capacity of 150 mAh/g was obtained for $Li/P(EO)_8$LiTFSI/$Li_{0.44}Ti_{0.22}Mn_{0.78}O_2$cells in electrochemical potential spectroscopy (ECPS) experiments. Cells with the titanium-doped manganese oxides exhibited a fade rate of 0.12 % or less per cycle.

  • PDF

Electrochemical Characteristics of Transition Metal Pyrophosphate as Negative Electrode Materials through Solid-state Reaction (고상법으로 합성된 리튬이온 이차전지용 음극물질로서 전이금속 피로인산화물의 전기화학적 특성)

  • Hong, Min Young;An, Sang-Jo;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.4
    • /
    • pp.105-112
    • /
    • 2020
  • Transition metal oxide, which undergoes a conversion reaction in the negative electrode material for a lithium-ion batteries, has a high specific capacity, but still has several critical problems. In this study, manganese pyrophosphate (Mn2P2O7), nickel pyrophosphate (Ni2P2O7), and carbon composite materials with pyrophosphates as novel negative electrode materials instead of transition metal oxide, are synthesized through simple solid-state reaction. The initial reversible capacity of Mn2P2O7 and Ni2P2O7 are 333 and 340 mAh g-1, and when the composite materials are composed with carbon, the reversible capacity increases to 433 and 387 mAh g-1, respectively. The initial Coulombic efficiency is also improved by about 10%. The Mn2P2O7 and carbon composite material has the highest initial capacity and efficiency, and has the best cycle performance. Mn2P2O7 containing polyanion, has a lower specific capacity due to the large mass of polyanion compared to MnO (manganese oxide). However, since Mn2P2O7 shows a voltage curve with a slope, the charging (lithiation) voltage increases from 0.51 to 0.57 V (vs. Li/Li+), and the discharge (delithiation) voltage decreases from 1.15 to 1.01 V (vs. Li/Li+). Therefore, the voltage efficiency of the cell is improved because the voltage difference between charging and discharging is greatly reduced from 0.64 to 0.44 V, and the operating voltage of the full cell increases because the negative electrode potential is lowered during the discharging process.

State of Health and State of Charge Estimation of Li-ion Battery for Construction Equipment based on Dual Extended Kalman Filter (이중확장칼만필터(DEKF)를 기반한 건설장비용 리튬이온전지의 State of Charge(SOC) 및 State of Health(SOH) 추정)

  • Hong-Ryun Jung;Jun Ho Kim;Seung Woo Kim;Jong Hoon Kim;Eun Jin Kang;Jeong Woo Yun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Along with the high interest in electric vehicles and new renewable energy, there is a growing demand to apply lithium-ion batteries in the construction equipment industry. The capacity of heavy construction equipment that performs various tasks at construction sites is rapidly decreasing. Therefore, it is essential to accurately predict the state of batteries such as SOC (State of Charge) and SOH (State of Health). In this paper, the errors between actual electrochemical measurement data and estimated data were compared using the Dual Extended Kalman Filter (DEKF) algorithm that can estimate SOC and SOH at the same time. The prediction of battery charge state was analyzed by measuring OCV at SOC 5% intervals under 0.2C-rate conditions after the battery cell was fully charged, and the degradation state of the battery was predicted after 50 cycles of aging tests under various C-rate (0.2, 0.3, 0.5, 1.0, 1.5C rate) conditions. It was confirmed that the SOC and SOH estimation errors using DEKF tended to increase as the C-rate increased. It was confirmed that the SOC estimation using DEKF showed less than 6% at 0.2, 0.5, and 1C-rate. In addition, it was confirmed that the SOH estimation results showed good performance within the maximum error of 1.0% and 1.3% at 0.2 and 0.3C-rate, respectively. Also, it was confirmed that the estimation error also increased from 1.5% to 2% as the C-rate increased from 0.5 to 1.5C-rate. However, this result shows that all SOH estimation results using DEKF were excellent within about 2%.

Development of a battery management system(BMS) simulator for electric vehicle(EV) cars (EV용 배터리 관리시스템(BMS) 시뮬레이터 개발)

  • Park, Chan-Hee;Kim, Sang-Jung;Hwang, Ho-Suk;Lee, Hee-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2484-2490
    • /
    • 2012
  • This study reports on the development and performance verification of cell simulation boards of simulator and the embedded program for board control of the battery management system (BMS) of electric vehicle (EV) cars, which manages the next-generation automotive lithium-ion battery pack. Here, we have improved the speed of the simulator by using operational (OP) amplifier and transistors that were connected in series. In addition, using a digital analog converter (DAC) in each channel, we have improved the performance by channel-to-channel isolation (isolation) as compared to the traditional methods. Furthermore, by constructing a current-limiting protection circuit, one can be protected from disturbance and, by utilizing a precision shunt resistor for the current sensor, we have increased the precision of the current control. In order to verify the performance of the developed simulator, we have performed the experiment 10 times, with values ranging from 0.5 V to 5 V, and a voltage drop step of 0.5 V. Significance analysis of experimental data, and repeatability tests were performed, showing an average standard deviation of 0.001~0.004 V, indicating high repeatability and high statistical significance of the current method and system.

Improved Cycle Life and Storage Performance in High-Voltage Operated Li2MnO3-LiMO2(M=Ni, Co, Mn)/Graphite Cell System by Fluorine Compounds as Main Electrolyte Solvent (고전압 구동 Li2MnO3-LiMO2(M=Ni, Co, Mn)/graphite 시스템에서의 전지 수명 및 고온 방치 특성 향상에 효과적인 플루오로 화합물계 전해액에 대한 연구)

  • Yu, Jung-Yi;Shin, Woocheol;Lee, Byong-Gon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.162-168
    • /
    • 2013
  • $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn) nano-composite is a promising cathode material for xEV application due to its high theoretic capacity. However high voltage operating system of $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn) has worked as a hurdle in its application because of the inherent demerits, such as cycle life degradation and gas evolution. In order to enhance cell performance of $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn)/graphite cell, we examined electrolyte mainly composed of FEC, fluroalkyl ether and $LiPF_6$ (F-based EL). F-based EL showed much better discharging retention ratio than 1.3 M $LiPF_6$ EC/EMC/DMC (3/4/3, v/v/v) (STD). Furthermore gas evolution, especially CO and $CO_2$ during $60^{\circ}C$ storage for 30 days was dramatically reduced owing to thermal stable SEI formation effect of F-based EL.

A Rational Design of Coin-type Lithium-metal Full Cell for Academic Research (차세대 리튬 금속 전지 연구 및 개발을 위한 코인형 전지의 효율적 설계)

  • Lee, Mingyu;Lee, Donghyun;Han, Jaewoong;Jeong, Jinoh;Choi, Hyunbin;Lee, Hyuntae;Lim, Minhong;Lee, Hongkyung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.65-75
    • /
    • 2021
  • Coin cell is a basic testing platform for battery research, discovering new materials and concepts, and contributing to fundamental research on next-generation batteries. Li metal batteries (LMBs) are promising since a high energy density (~500 Wh kg-1) is deliverable far beyond Li-ion. However, Li dendrite-triggered volume fluctuation and high surface cause severe deterioration of performance. Given that such drawbacks are strongly dependent on the cell parameters and structure, such as the amount of electrolyte, Li thickness, and internal pressure, reliable Li metal coin cell testing is challenging. For the LMB-specialized coin cell testing platform, this study suggests the optimal coin cell structure that secures performance and reproducibility of LMBs under stringent conditions, such as lean electrolyte, high mass loading of NMC cathode, and thinner Li use. By controlling the cathode/anode (C/A) area ratio closer to 1.0, the inactive space was minimized, mitigating the cell degradation. The quantification and imaging of inner cell pressure elucidated that the uniformity of the pressure is a crucial matter to improving performance reliability. The LMB coin cells exhibit better cycling retention and reproducibility under higher (0.6 MPa → 2.13 MPa) and uniform (standard deviation: 0.43 → 0.16) stack pressure through the changes in internal parts and introducing a flexible polymer (PDMS) film.

The Electrochemical Properties of PAN-PVDF-PEGME Blend Polymer Electrolyte System (PAN-PVDF-PEGME Blend계 고분자전해질의 전기화학적 특성)

  • Ryu, Kwang Sun;Lee, Gye Joong;Liou, Kwang Kyoung;Kang, Seong Gu;Chang, Soon Ho
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.199-205
    • /
    • 1999
  • The electrochemical properties of PAN-PVDF-PEGME blend polymer electrolyte system are investigated and the physical properties are also measured with varying the content of PEGME. This PEGME partially reduces the crystallinity of PVDF. The ionic conductivities of the polymer electrolytes are about $10^{-3}S/cm$, which may be applicable to a constituent of lithium secondary battery. From the temperature dependence of ionic conductivity, it is suggested that the ionic conductivity increases with the PEGME content due to the fomation of effective ion-conducting path. The cation transference number reaches its maximum value for the electrolytes (SPE 2) with 10 wt% PEGME and then decreases for further increase of PEGME contnet. The electrochemically stable range of SPE 1 (without PEGME) is about 4.3 V, but SPE 2-4 (PAN-PVDF-PEGME system) is about 4.6 V. When these polymer electrolyte are used as electrolyte in rechargeable battery and the cell performances are tested, the discharge capacity increses with the amount of PEGME. Therefore, PEGME increases the ionic conductivity, extends the electrochemical stable range, and finally improves the discharge capacity of cell adopting the electrolyte system.

  • PDF

Synthesis and Electrochemical Properties of Li1-xFeO2-yFy-LixMnO2 (Mn/(Mn + Fe) = 0.8, 0≤y≤0.15)) Cathode Materials by Anion Substitution (음이온 치환을 이용한 Li1-xFeO2-yFy-LixMnO2 (Mn/(Mn + Fe) = 0.8, 0≤y≤0.15) 양극 활물질의 합성 및 전기화학적 특성)

  • Heo, J.B.;Park, G.J.;Lee, Y.S.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.239-244
    • /
    • 2007
  • In order to investigate the effect of fluorine ion in the $Li_{1-x}FeO_2Li_xMnO_2$ (Mn/(Mn + Fe) = 0.8) cathode material, it was synthesized $Li_{1-x}FeO_{2-y}F_y-Li_xMnO_2$ (Mn/(Mn + Fe) = 0.8, $0.05{\le}y{\le}0.15$) cathode materials at $350^{\circ}C$ for 10hrs using solid-state method. $Li_{1-x}FeO_{2-y}F_y-Li_xMnO_2$ (Mn/(Mn + Fe) = 0.8, $0.0{\le}y{\le}0.1$ was composed many large needle-like particles of about $1-1.5\;{\mu}m$ and small particles of about 50-100 nm, which were distributed among the larger particles. However, $Li_{1-x}FeO_{1.85}F_{0.15}-Li_xMnO_2$ material showed slightly different particle morphology. The particles of $Li_{1-x}FeO_{1.85}F_{0.15}-Li_xMnO_2$ were suddenly increased and started to be a spherical type of particle shape. $Li/Li_{1-x}FeO_{1.9}F_{0.1}-Li_xMnO_2$ cell showed a high initial discharge capacity of 163 mAh/g and a high cycle retention rate of 95% after 50 cycles. The initial discharge capacity of $Li/Li_{1-x}FeO_{2-y}F_y-Li_xMnO_2$ ($0.05{\le}y{\le}0.15$) cells increased according to the increase of F content. However, the cycleability of this cell was very rapidly decreased when the substituted fluorine content is over 0.1. We suggested that too large amount of F ion fail to substitute into the $Li_{1-x}FeO_2-Li_xMnO_2$ structure, which resulted in the severe decline of battery performance.