• 제목/요약/키워드: Lithium reduction

검색결과 226건 처리시간 0.024초

A Facile Reduction of Acid Anhydrides with Borane in the Presence of Lithium Chloride in Tetrahydrofuran

  • Yoon, Nung-Min;Lee, Whee-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권4호
    • /
    • pp.296-298
    • /
    • 1986
  • Carboxylic acid anhydrides are rapidly reduced with borane-lithium chloride (1:0.1) system to give corresponding alcohols (diols in the case of cyclic anhydride) quantitatively in tetrahydrofuran at room temperature. This reagent tolerates aromatic acid ester, nitro, and halide functional groups, however competitively reduces aliphatic ester and nitrile groups.

Selective Reduction by Lithium Bis-or Tris(dialkylamino)-aluminum Hydrides. II. Reaction of Lithium Tris(dibutylamino)-aluminum Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Cha, Jin-Soon;Lee, Sung-Eun;Lee, Heung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제12권6호
    • /
    • pp.644-649
    • /
    • 1991
  • The approximate rates and stoichiometry of the reaction of excess lithium tris(dibutylamino)aluminum hydride (LT-DBA) with selected organic compounds containing representative functional groups under standardized conditions (tetrahydrofuran, $0^{\circ}C$) were studied in order to characterize the reducing characteristics of the reagent for selective reductions. The reducing ability of LTDBA was also compared with those of the parent lithium aluminum hydride and the alkoxy derivatives. The reagent appears to be much milder than the parent reagent, but stronger than lithium tri-t-butoxyaluminohydride in reducing strength. LTDBA shows a unique reducing characteristics. Thus, the reagent reduces aldehydes, ketones, esters, acid chlorides, epoxides, and amides readily. In addition to that, ${\alpha},{\beta}$-unsaturated aldehyde is reduced to ${\alpha},{\beta}$-unsaturated alcohol. Quinones are reduced to the corresponding diols without evolution of hydrogen. Tertiary amides and aromatic nitriles are converted to aldehydes with a limiting amount of LTDBA. Finally, disulfides and sulfoxides are readily reduced to thiols and sulfides, respectively, without hydrogen evolution.

실리콘 상온 전해 도금 박막 제조 및 전기화학적 특성 평가 (Room Temperature Preparation of Electrolytic Silicon Thin Film as an Anode in Rechargeable Lithium Battery)

  • 김은지;신헌철
    • 한국재료학회지
    • /
    • 제22권1호
    • /
    • pp.8-15
    • /
    • 2012
  • Silicon-based thin film was prepared at room temperature by an electrochemical deposition method and a feasibility study was conducted for its use as an anode material in a rechargeable lithium battery. The growth of the electrodeposits was mainly concentrated on the surface defects of the Cu substrate while that growth was trivial on the defect-free surface region. Intentional formation of random defects on the substrate by chemical etching led to uniform formation of deposits throughout the surface. The morphology of the electrodeposits reflected first the roughened surface of the substrate, but it became flattened as the deposition time increased, due primarily to the concentration of reduction current on the convex region of the deposits. The electrodeposits proved to be amorphous and to contain chlorine and carbon, together with silicon, indicating that the electrolyte is captured in the deposits during the fabrication process. The silicon in the deposits readily reacted with lithium, but thick deposits resulted in significant reaction overvoltage. The charge efficiency of oxidation (lithiation) to reduction (delithiation) was higher in the relatively thick deposit. This abnormal behavior needs to clarified in view of the thickness dependence of the internal residual stress and the relaxation tendency of the reaction-induced stress due to the porous structure of the deposits and the deposit components other than silicon.

Deposition of Functional Organic and Inorganic Layer on the Cathode for the Improved Electrochemical Performance of Li-S Battery

  • Sohn, Hiesang
    • Korean Chemical Engineering Research
    • /
    • 제55권4호
    • /
    • pp.483-489
    • /
    • 2017
  • The loss of the sulfur cathode material through dissolution of the polysulfide into electrolyte causes a significant capacity reduction of the lithium-sulfur cell during the charge-discharge reaction, thereby debilitating the electrochemical performance of the cell. We addressed this problem by using a chemical and physical approach called reduction of polysulfide dissolution through direct coating functional inorganic (graphene oxide) or organic layer (polyethylene oxide) on electrode, since the deposition of external functional layer can chemically interact with polysulfide and physically prevent the leakage of lithium polysulfide out of the electrode. Through this approach, we obtained a composite electrode for a lithium-sulfur battery (sulfur: 60%) coated with uniform and thin external functional layers where the thin external layer was coated on the electrode by solution coating and drying by a subsequent heat treatment at low temperature (${\sim}80^{\circ}C$). The external functional layer, such as inorganic or organic layer, not only alleviates the dissolution of the polysulfide electrolyte during the charging/discharging through physical layer formation, but also makes a chemical interaction between the polysulfide and the functional layer. As-formed lithium-sulfur battery exhibits stable cycling electrochemical performance during charging and discharging at a reversible capacity of 700~1187 mAh/g at 0.1 C (1 C = 1675 mA/g) for 30 cycles or more.

Reaction of Lithium (2,3-Dimethyl-2-butyl)-t-butoxyborohydride with Selected Organic Compounds Containing Representative Functional Groups

  • Cha, Jin-Soon;Lee, Dae-Yon
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권6호
    • /
    • pp.856-861
    • /
    • 2002
  • The general reducing charagteristics of a newly synthesized reducing agent, lithium(2.3-dimethyl-2-butyl)-${\iota}$-butoxyborohydride (Li $Thx'BuOB_2$, 1), in tetrahydrofuran (THF) toward selected organic compounds containing representative fundtional groups under practical has been examined. The reagent revealed an interesting and unique reducing characteristics. Especially, the stereoselectivity in the reduction of cyclic ketones was extraordinary. Thus, the introduction of bulky alkyl and alkoxy groups into the parent borohydride affonds a high stereoselectivity. In general, the reducing power of the reagent is somewhere between the dialiylborohydride and the parent borohydride. This permits the reagent to be a reagent of choice for selecitive reduction of organic compounds with an improved selectivity.

리튬 이온 커패시터에서 마이크로파 조사에 의한 팽창 흑연의 전기화학적 특성 (Electrochemical Characteristics of Expanded Graphite by Microwave Irradiation in Lithium Ion Battery)

  • Seol, Sun-hwa;Park, Soo-gil;KIM, Han-Ju;Kim, Hong-il
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2014년도 추계학술대회 논문집
    • /
    • pp.167-167
    • /
    • 2014
  • Graphite is used as a negative electrode active material of Lithium ion capacitor (LIC). At the cathod, electrostatic reaction of EDLC is a very high reaction rate compared to a oxidaion reduction reaction. When the graphite was expanded that the length between the sheet, the intercalation of lithium ions is smoothed. And thus, the power density increases. By measuring the XRD, it was confirmed that the increase in interlayer spacing of graphite. And by measuring an electrochemical reactionin Lithium Ion Battery (LIB), it was confirmed the tendency of power density is improved.

  • PDF

Mixed Electrolytes of Organic Solvents and Ionic Liquid for Rechargeable Lithium-Ion Batteries

  • Choi, Ji-Ae;Shim, Eun-Gi;Scrosati, Bruno;Kim, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권11호
    • /
    • pp.3190-3194
    • /
    • 2010
  • Mixed electrolytes formed by the combination of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (BMP-TFSI) ionic liquid and standard liquid electrolyte are prepared and characterized. Linear sweep voltammetry measurements demonstrate that these mixed systems exhibit a wide electrochemical stability window, allowing them to be suitable electrolyte for carbonaceous anode-based lithium-ion batteries. Lithium-ion cells composed of graphite anode and $LiCoO_2$ cathode are assembled using the mixed electrolytes, and their cycling performances are evaluated. The cell containing proper content of BMP-TFSI shows good cycling performance comparable to that of a cell assembled with organic electrolyte. The presence of BMP-TFSI in the mixed electrolyte contributes to the reduction of the flammability of electrolyte solution and the improvement of the thermal stability of charged $Li_{1-x}CoO_2$ in the electrolyte solution.