• 제목/요약/키워드: Lithium ion Battery

Search Result 935, Processing Time 0.035 seconds

Analysis of structural and thermodynamic properties for Li-SGICs synthesized by chemical method (화학적 방법에 의하여 합성된 Li-SGICs의 구조적, 열역학적 특성 분석)

  • 오원춘
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.3
    • /
    • pp.435-441
    • /
    • 1998
  • Li-SGICs as a anode of lithium ion battery were synthesized by high-pressure method as a function of the Li-contents. The characteristics of these prepared compounds were determined from the studies with X-ray diffraction method and differential scanning calorimeter (DSC) analysis. From the results of X-ray diffraction, it was found that the lower stage intercalation compounds were formed with increase of Li-contents. The mixed stages in these compounds were also observed. In the case of the $Li_{30;wt%}$-SGIC, the compounds in the stage 1 structure were formed predominantly, but the structure of only pure stage 1, due to the structural defect of synthetic graphite, was not observed. The enthalpy and entropy changes of the compounds could be obtained from the differential scanning calorimetric analysis results. From the results, it was found that exothermic and endothermic reactions of Li-SGICs are related to thermal stability of lithium between artificial graphite layers.

  • PDF

Electrochemical Properties of LiNi0.4Mn0.3Co0.3O2 Cathode Material for Lithium Ion Battery (리튬이온전지용 정극활물질 LiNi0.4Mn0.3Co0.3O2의 전기화학적 특성)

  • Kong, Ming-Zhe;Kim, Hyun-Soo;Kim, Ke-Tack;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.650-654
    • /
    • 2006
  • [ $LiNi_{0.4}Mn_{0.3}Co_{0.3}O_2$ ] cathode material was synthesized by a mixed hydroxide method. Structural characterization was carried out using X-ray diffraction studies. Electrochemical studies were performed by assembling 2032 coin cells with lithium metal as an anode. DSC (Differential scanning calorimetry) data showed that exothermic reactions of $LiNi_{0.4}Mn_{0.3}Co_{0.3}O_2$ charged to 4.3 V versus Li started at high temperatures$(280\sim390^{\circ}C)$. The cell of $LiNi_{0.4}Mn_{0.3}Co_{0.3}O_2$ mixed cathode delivered a discharge capacity of 150 mAh/g at a 0.2 C rate. The capacity of the cell decreased with the current rate and a useful capacity of 134 mAh/g was obtained at a 2 C rate. The reversible capacity after 100th cycles was 126 mAh/g when a cell was cycled at a current rate of 0.5 C in $2.8\sim4.3V$.

Synthesis and Electrochemical Characteristics of Carbon added Li3V2(PO4)3 (탄소첨가한 Li3V2(PO4)3의 합성 및 전기화학적 특성)

  • Jo, Yeong-Im;Na, Byung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.2
    • /
    • pp.101-108
    • /
    • 2012
  • The purpose of this study was to improve the conductivity of $Li_3V_2(PO_4){_3}$ by adding carbon source so that the discharge rate and cyclic properties were improved. Glucose and CNT were added to $Li_3V_2(PO_4){_3}$ and the structure and electrochemical properties were studied. $Li_3V_2(PO_4){_3}$, $Li_3V_2(PO_4){_3}$/C and $Li_3V_2(PO_4){_3}$/CNT were synthesised by solid state reaction using hydrogen reduction method at 600, 700, 800, $900^{\circ}C$. The cathode materials were assembled to coin cell type 2032 with Lithium metal as a counter electrode. The coin cell was galvanostatically evaluated in the voltage range of 3.0~4.8 V.

Synthesis of $LiCoO_{2}$ powders from precursors prepared by precipitation process

  • Park, Cheong-Song;La, Jung-In;Kim, Do-Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.87-90
    • /
    • 2002
  • $LiCoO_{2}$ powders were synthesized at various temperatures using lithium hydroxide and cobalt hydroxide as precursors prepared by precipitation process and freeze-drying. In this study, the$LiCoO_{2}$ samples were synthesized via a solid state reaction with various LiOH concentration between 10 % and 30 % excess. And $LiCoO_{2}$powders were calcined at 600~$800^{\circ}C$ in a short time. Measurements of XRD and SEM were performed to characterize the properties of the prepared materials. The effect of amount of Li ions on the structural change in powder has been examined using the XRD analysis. For the not added excess of LiOH, CoOOH phase presented in the XRD pattern of $LiCoO_{2}$ due to loss of Li ions during firing. The morphology and particle size of the powders were examined using SEM. The obtained powders are high temperature-$LiCoO_{2}$HT-LiCoO$_{2}$) and homogeneous with the range of grain size in the order of hundreds of nanometers. The effects of variation of LiOH concentration on the structural change in powder were investigated using the Rietveld analysis. As an analysis result, c/a is constant by 4.99 on all occasions. Finally, the structure of HT-$LiCoO_{2}$ was simulated by the commercial software $Creius^{2}$(Molecular Simulations, Inc.) from the results of Rietveld analysis.

The Electrochemical Properties and Synthesis of V2O5 Xerogel using H2O2 (과산화수소를 이용한 V2O5 Xerogel의 합성 및 전기화학적 특성)

  • Park, Heai-Ku;Jung, Jae-Youb;Lee, Man-Ho
    • Applied Chemistry for Engineering
    • /
    • v.16 no.1
    • /
    • pp.107-111
    • /
    • 2005
  • We have performed a study on the electrochemical characteristics and nuclear ($^7Li$) magnetic resonance of $V_2O_5$ xerogels that have been synthesized by the sol-gel reaction of $V_2O_5$ powder with hydrogen peroxide. NMR measurements revealed that chemical shift of $Li^+$ ions varied as lithium ions were inserted into $V_2O_5$ xerogel and that several different sites for $Li^+$ ions existed in the $V_2O_5$ xerogel structure. The electrochemical properties of the xerogel electrodes did not depend much upon the concentration of $V_2O_5$ and HCl that were used for the synthesis of $V_2O_5$ gels. The specific capacity of $V_2O_5$ xerogels were about 140 mAh/g, similar to that of the xerogels prepared by the ion exchange method.

Influence of Heat Treatment on Separators for Lithium Secondary Batteries (리튬 이차전지용 분리막에 대한 열처리의 영향)

  • Lee, Sae-Me;Ryu, Sang-Woog
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.93-97
    • /
    • 2012
  • Heat treatment effect of polyethylene (PE) separators was investigated after storage at 80, 100 and $120^{\circ}C$ for 1 h. All the samples showed enhanced tensile strength and modulus after heat treatment, but thermal shrinkage up to 15% was observed in PE films having newly formed dimple structure on the surface of fiber after annealed at 100 and $120^{\circ}C$. Although there was 5% of thermal shrinkage after annealing at $80^{\circ}C$, no such serious changes in PE fiber was observed. Furthermore, the separator was found to have enhanced cell performance with 1.3 and 2.3 times higher tensile strength and modulus after heat treatment at $80^{\circ}C$ for 1 h.

Macroporous Thick Tin Foil Negative Electrode via Chemical Etching for Lithium-ion Batteries (화학적 식각을 통해 제조한 리튬이온 이차전지용 고용량 다공성 주석후막 음극)

  • Kim, Hae Been;Lee, Pyung Woo;Lee, Dong Geun;Oh, Ji Seon;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.1
    • /
    • pp.36-42
    • /
    • 2019
  • A macroporous Sn thick film as a high capacity negative electrode for a lithium ion secondary battery was prepared by using a chemical etching method using nitric acid for a Sn film having a thickness of $52{\mu}m$. The porous Sn thick film greatly reduced the over-voltage for the alloying reaction with lithium by the increased reaction area. At the same time. The porous structure of active Sn film plays a part in the buffer and reduces the damage by the volume change during cycles. Since the porous Sn thick film electrode does not require the use of the binder and the conductive carbon black, it has substantially larger energy density. As the concentration of nitric acid in etching solution increased, the degree of the etching increased. The etching of the Sn film effectively proceeded with nitric acid of 3 M concentration or more. The porous Sn film could not be recovered because the most of Sn was eluted within 60 seconds by the rapid etching rate in the 5 M nitric acid. In the case of etching with 4 M nitric acid for 60 seconds, the appropriate porous Sn film was formed with 48.9% of weight loss and 40.3% of thickness change during chemical acid etching process. As the degree of etching of Sn film increased, the electrochemical activity and the reversible capacity for the lithium storage of the Sn film electrode were increased. The highest reversible specific capacity of 650 mAh/g was achieved at the etching condition with 4 M nitric acid. The porous Sn film electrode showed better cycle performance than the conventional electrode using a Sn powder.

Protection Effect of ZrO2 Coating Layer on LiCoO2 Thin Film

  • Lee, Hye-Jin;Nam, Sang-Cheol;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1483-1490
    • /
    • 2011
  • The protection effect of a $ZrO_2$ coating layer on a $LiCoO_2$ thin film was characterized. A wide and smooth $LiCoO_2$ thin film offers sufficient opportunity for careful observation of the reaction at the interface between cathode (coated and uncoated) and electrolyte. The formation of a $ZrO_2$ coating on a $LiCoO_2$ thin film was confirmed by secondary ion mass spectrometry. Scanning electron and atomic force microscopy were used to characterize the surface morphologies of coated and uncoated films before and after cycling. A $ZrO_2$-coated $LiCoO_2$ film showed a higher discharge capacity and rate capability than an uncoated film. This may be associated with a surface protection effect of the coating. The surface of a pristine film was damaged during cycling, whereas the coated film maintained a relatively clear surface under the same measurement conditions. This result clearly demonstrates the protection effect of a $ZrO_2$ coating on a $LiCoO_2$ thin film.

A Highly Power-Efficient Single-Inductor Multiple-Outputs (SIMO) DC-DC Converter with Gate Charge Sharing Method

  • Nam, Ki-Soo;Seo, Whan-Seok;Ahn, Hyun-A;Jung, Young-Ho;Hong, Seong-Kwan;Kwon, Oh-Kyong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.549-556
    • /
    • 2014
  • This paper proposes a highly power-efficient single-inductor multiple-outputs (SIMO) DC-DC converter with a gate charge sharing method in which gate charges of output switches are shared to improve the power efficiency and to reduce the switching power loss. The proposed converter was fabricated by using a $0.18{\mu}m$ CMOS process technology with high voltage devices of 5 V. The input voltage range of the converter is from 2.8 V to 4.2 V, which is based on a single cell lithium-ion battery, and the output voltages are 1.0 V, 1.2 V, 1.8 V, 2.5 V, and 3.3 V. Using the proposed gate charge sharing method, the maximum power efficiency is measured to be 87.2% at the total output current of 450 mA. The measured power efficiency improved by 2.1% compared with that of the SIMO DC-DC converter without the proposed gate charge sharing method.

Synthesis of Cross-Linked Polyurethane-Based Gel Polymer Electrolyte and Its Electrochemical Properties (가교형 폴리우레탄기 겔 폴리머 전해질의 합성과 전기화학적 특성)

  • Kim, Hyun-Soo;Kim, Sung-Il;Choi, Gwan-Young;Moon, Seong-In;Yun, Mun-Soo;Kim, Sang-Pil
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.98-102
    • /
    • 2003
  • Urethane acrylate oligomer was synthesized and used in a gel polymer electrolyte (GPE) and then its electrochemical performances were evaluated. $LiCoO_2/GPE/graphite$ cells were prepared and their performances depending on discharge currents and temperatures were evaluated. The precursor containing $5 vol\%$ curable mixture had a low viscosity relatively. ionic conductivity of the gel polymer electrolyte at room temperature and $-20^{\circ}C$ was ca. $5.9\times10^{-3}S{\cdot}cm^{-1}\;and\;1.4times10^{-3}S{\cdot}cm^{-1}$, respectively. GPE showed good electrochemical stability up to potential of 4.5V vs. RLi/Li^+.\;LiCoO_2/GPE/graphite$ cell showed a good high-rate and low-temperature performance.