• Title/Summary/Keyword: Lithium Reduction

Search Result 226, Processing Time 0.029 seconds

Characterization of Surface Films Formed Prior to Bulk Reduction of Lithium in Rigorously Dried Propylene Carbonate Solutions

  • Chang, Seok Gyun;Lee, Hyo Jung;Gang, Heon;Park, Su Mun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.481-487
    • /
    • 2001
  • Surface films formed prior to bulk reduction of lithium have been studied at gold, platinum, and copper electrodes in rigorously dried propylene carbonate solutions using electrochemical quartz crystal microbalance (EQCM) and secondary ion mass spectrometry experiments. The results indicate that the passive film formation takes place at a potential as positive as about 2.0 V vs. Li/Li+ , and the passive film thus formed in this potential region is thicker than a monolayer. Quantitative analysis of the EQCM results indicates that electrogenerated lithium reacts with solvent molecules to produce a passive film consisting of lithium carbonate and other compounds of larger molecular weights. The presence of lithium carbonate is verified by SIMS, whereas the lithium compounds of low molecular weights, including lithium hydroxide and oxide, are not detected. Further lithium reduction takes place underneath the passive film at potentials lower than 1.2 V with a voltammetric current peak at about 0.6 V.

Hydrogen Reduction Behavior of NCM-based Lithium-ion Battery Cathode Materials (NCM계 리튬이온 배터리 양극재의 수소환원 거동)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.163-168
    • /
    • 2024
  • As the demand for lithium-ion batteries for electric vehicles is increasing, it is important to recover valuable metals from waste lithium-ion batteries. In this study, the effects of gas flow rate and hydrogen partial pressure on hydrogen reduction of NCM-based lithium-ion battery cathode materials were investigated. As the gas flow rate and hydrogen partial pressure increased, the weight loss rate increased significantly from the beginning of the reaction due to the reduction of NiO and CoO by hydrogen. At 700 ℃ and hydrogen partial pressure above 0.5 atm, Ni and Li2O were produced by hydrogen reduction. From the reduction product and Li recovery rate, the hydrogen reduction of NCM-based cathode materials was significantly affected by hydrogen partial pressure. The Li compounds recovered from the solution after water leaching of the reduction products were LiOH, LiOH·H2O, and Li2CO3, with about 0.02 wt% Al as an impurity.

Lithium Recovery from NCM Lithium Ion Battery by Hydrogen Reduction Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 수소환원과 수침출에 의한 리튬 회수)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.1
    • /
    • pp.15-21
    • /
    • 2024
  • The demand for electric vehicles powered by lithium-ion batteries is continuously increasing. Recovery of valuable metals from waste lithium-ion batteries will be necessary in the future. This research investigated the effect of reaction temperature on the lithium recovery ratio from hydrogen reduction followed by water leaching from lithium-ion battery NCM-based cathode materials. As the reaction temperature increased, the weight loss ratio observed after initiation increased rapidly owing to hydrogen reduction of NiO and CoO; at the same time, the H2O amount generated increased. Above 602 ℃, the anode materials Ni and Co were reduced and existed in the metallic phases. As the hydrogen reduction temperature was increased, the Li recovery ratio also increased; at 704 ℃ and above, the Li recovery ratio reached a maximum of approximately 92%. Therefore, it is expected that Li can be selectively recovered by hydrogen reduction as a waste lithium-ion battery pretreatment, and the residue can be reprocessed to efficiently separate and recover valuable metals.

Effect of Trialkylborane on the Stereochemistry of Ketone Reduction with Lithium Borohydride

  • Nung-Min Yoon;Jin-Soon Cha;Won-Suh Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.14-17
    • /
    • 1983
  • The effects of trialkylborane on the stereochemistry of ketone reduction with lithium borohydride were studied for the four representative ketones, namely 4-t-butylcyclohexanone, 2-methylcyclohexanone, norcamphor, and camphor. The presence of trialkylborane increased the yields of the less stable alcohols. For example, in the presence of tri-s-butylborane, 42 % yield of cis-4-t-butylcyclohexanol was observed whereas only 8 % yield with lithium borohydride alone in the reduction of 4-t-butylcyclohexanone. The in situ formation of lithium trialkylborohydride, by the hydride transfer from lithium trialkoxyborohydride to trialkylborane, was demonstrated as a possible mechanism for the catalytic effect of trialkylborane.

Attempts on the Preparation of Lithium Trialkoxyborohydrides. Stability and Stereoselective Reduction of Cyclic Ketones

  • Cha, Jin-Soon;Kim, Jin-Euog;Lee, Jae-Cheol;Yoon, Mal-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.66-69
    • /
    • 1986
  • The reaction of potassium trialkoxyborohydrides of varying steric requirements with lithium chloride in tetrahydrofuran(THF) was examined in detail to establish the generality of this synthesis of the corresponding lithium trialkoxyborohydrides. The metal ion exchange reaction between potassium triisopropoxyborohydride and lithium chloride in THF proceeded instantly at room temperature and the corresponding lithium salt was very stable toward disproportionation. However, for R = s-Bu, t-Bu and 2-methylcyclohexyl, with increasing steric requirement, the lithium derivatives were unstable and thus dissociated into $(RO)BH_3^-\;and\; (RO)_4B^-$. The stereoselectivity of lithium triisopropoxyborohydride(LIPBH) in the reduction of representative cyclic ketones was examined and compared with that of the potassium derivative.

Preparation of Silicon-Carbon Composite via Magnesiothermic Reduction Method and Its Application to the Anode Material for Lithium Ion Battery (마그네슘열환원법을 이용한 실리콘-탄소 복합재 제조 및 리튬이차전지 음극재로의 이용)

  • Kim, Eudem;Kwon, Soon Hyung;Kim, Myung-Soo;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.243-248
    • /
    • 2014
  • Silicon-carbon composite was prepared by the magnesiothermic reduction of mesoporous silica and subsequent impregnation with a carbon precursor. This was applied for use as an anode material for high-performance lithium-ion batteries. Well-ordered mesoporous silica(SBA-15) was employed as a starting material for the mesoporous silicon, and sucrose was used as a carbon source. It was found that complete removal of by-products ($Mg_2Si$ and $Mg_2SiO_4$) formed by side reactions of silica and magnesium during the magnesiothermic reduction, was a crucial factor for successful formation of mesoporous silicon. Successful formation of the silicon-carbon composite was well confirmed by appropriate characterization tools (e.g., $N_2$ adsorption-desorption, small-angle X-ray scattering, X-ray diffraction, and thermogravimetric analyses). A lithium-ion battery was fabricated using the prepared silicon-carbon composite as the anode, and lithium foil as the counter-electrode. Electrochemical analysis revealed that the silicon-carbon composite showed better cycling stability than graphite, when used as the anode in the lithium-ion battery. This improvement could be due to the fact that carbon efficiently suppressed the change in volume of the silicon material caused by the charge-discharge cycle. This indicates that silicon-carbon composite, prepared via the magnesiothermic reduction and impregnation methods, could be an efficient anode material for lithium ion batteries.

Reaction of Lithium Gallium Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Choe, Jeong Hun;Yun, Mun Yeong;Yun, Jong Hun;Jeong, Dong Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.416-421
    • /
    • 1995
  • The approximate rates and stoichiometry of the reaction of excess lithium gallium hydride with selected organic compounds containing representative functional groups were examined under the standard conditions (diethyl ether, 0 $^{\circ}C)$ in order to compare its reducing characteristics with lithium aluminum hydride and lithium borohydride previously reported, and enlarge the scope of its applicability as a reducing agent. Alcohols, phenol, and amines evolve hydrogen rapidly and quantitatively. However lithium gallium hydride reacts with only one active hydrogen of primary amine. Aldehydes and ketones of diverse structure are rapidly reduced to the corresponding alcohols. Conjugated aldehyde and ketone such as cinnamaldehyde and methyl vinyl ketone are rapidly reduced to the corresponding saturated alcohols. p-Benzoquinone is mainly reduces to hydroquinone. Caproic acid and benzoic acid liberate hydrogen rapidly and quantitatively, but reduction proceeds slowly. The acid chlorides and esters tested are all rapidly reduced to the corresponding alcohols. Alkyl halides and epoxides are reduced rapidly with an uptake of 1 equiv of hydride. Styrene oxide is reduced to give 1-phenylethanol quantitatively. Primary amides are reduced slowly. Benzonitrile consumes 2.0 equiv of hydride rapidly, whereas capronitrile is reduced slowly. Nitro compounds consumed 2.9 equiv of hydride, of which 1.9 equiv is for reduction, whereas azobenzene, and azoxybenzene are inert toward this reagent. Cyclohexanone oxime is reduced consuming 2.0 equiv of hydride for reduction at a moderate rate. Pyridine is inert toward this reagent. Disulfides and sulfoxides are reduced slowly, whereas sulfide, sulfone, and sulfonate are inert under these reaction conditions. Sulfonic acid evolves 1 equiv of hydrogen instantly, but reduction is not proceeded.

Transformation of Carboxylic Acids and Their Derivatives into Aldehydes by Lithium Tris(dialkylamino)aluminum Hydrides

  • Cha Jin Soon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.670-676
    • /
    • 1992
  • A systematic study of the partial reduction of carboxylic acids and their derivatives to the corresponding aldehydes with lithium tris(dialkylamino)aluminum hydrides under practical conditions has been carried out. The diethylaminosubstituted derivative of lithium aluminum hydride, lithium tris(diethylamino)aluminum hydride (LTDEA), shows quite general applicability in the conversion of carboxylic acids, carboxylic esters, and primary carboxamides to the corresponding aldehydes. Lithium tripiperidinoaluminum hydride (LTPDA) also appears to be a reagent of choice for such partial transformation of primary carboxamides. In additioin, both LTDEA and LTPDA reduce tertiary carboxyamides to aldehydes in high yields. Finally, lithium tris(dihexylamino)aluminum hydride (LTDHA) is capable of achieving the chemoselective reduction of aromatic nitriles to aldehydes in the presence of aliphatic nitriles under practical conditions.