• Title/Summary/Keyword: Lithium Electrode

Search Result 502, Processing Time 0.027 seconds

The Effect of Coating Thickness on the Electrochemical Properties of a Li-La-Ti-O-coated Li[Ni0.3Co0.4Mn0.3]O2 Cathode

  • Lee, Hye-Jin;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3233-3237
    • /
    • 2010
  • A $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ cathode was modified by coating with Li-La-Ti-O, and the effect of the coating thickness on their electrochemical properties was studied. The thickness of the coating on the surface of $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_2$ was increased by increasing the wt % of the coating material. The rate capability of the Li-La-Ti-O-coated electrode was superior to that of the pristine sample. 1- and 2-wt %-coated samples showed considerable improvement in capacity retention at high C rates. However, the rate capability of a 5-wt %-coated sample decreased. All the coated samples showed a high discharge capacity and slightly improved cyclic performance under a high cut-off voltage (4.8 V) condition. Results of a storage test confirmed that the Li-La-Ti-O coating layer was effective in suppressing the dissolution of the transition metals as it offered protection from the attack of the acidic electrolyte. In particular, the 2- and 5-wt %-coated samples showed a better protection effect than the 1-wt %-coated sample.

Electrochemical Properties of Li[Ni0.2Li0.2Mn0.6]O2 by Microwave-assisted Sol-gel Method

  • Park, Yong-Joon;Kim, Seuk-Buom
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.102-105
    • /
    • 2009
  • $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ cathode materials have been synthesized by a microwave-assisted sol-gel method. The structure and electrochemical properties of $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ were studied by X-ray difftactometry (XRD), scanning electron microscopy (SEM) and charge-discharge cycler. The powder prepared by microwave assisted sol-gel method showed good crystallinity and well-defined facet shapes. The $Li[Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ electrode delivered a high discharge capacity of 230 $mAhg^{-1}$ at the specific current of 40 $mAg^{-1}$ (0.2 C rate) in the voltage range of 2.0${\sim}$4.8 V. About 60 % of the discharge capacity measured at 0.2 Crate (140 $mAhg^{-1}$) was maintained at a 6 C (1200 $mAg^{-1}$)rate. The cyclic property was also stable and it did not deteriorated at a high Crate.

The Effects of LaF3 Coating on the Electrochemical Property of Li[Ni0.3Co0.4Mn0.3]O2 Cathode Material

  • Yun, Su-Hyun;Kim, Seuk-Buom;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2584-2588
    • /
    • 2009
  • The effect of $LaF_3$ coating on the structural and electrochemical properties of $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_{2}$ cathodes was investigated using XRD, SEM, TEM, and a cycler. The coating layer consisted of nano-sized particles attached nonuniformly to the surface of pristine powder. Despite the surface coating treatment, phase difference by $LaF_3$ coating was not detected. The discharge capacities of coated electrodes were a little lower than that of pristine sample at a 1 C rate. However, as the C rate increases, the capacity retention of the coated sample becomes obviously superior to that of the pristine sample. The cyclic performances of the electrodes in the voltage range of 4.8 $\sim$ 3.0 V were also improved by the surface coating. Such enhancement is attributed to the presence of the $LaF_3$ coating layer, which effectively suppressd the reaction between electrodes and electrolytes on the surface of the $Li[Ni_{0.3}Co_{0.4}Mn_{0.3}]O_{2}$ electrode.

Fabrication and charaterization of $RuO_2$based thin film supercapacitor ($RuO_2$박막을 이용한 박막 슈퍼캐패시터의 제작 및 분석)

  • 임재홍;최두진;전은정;남성철;조원일;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.920-923
    • /
    • 2000
  • All solid-state thin film supercapacitor(TFSC) based on $RuO_2$ electrode was fabricated. Ruthenium oxide$(RuO_2)$ thin film was deposited on Pt/Ti/Si subsrate by d.c. magnetron sputtering. LiPON(lithium phosphorus oxynitride) thin film were deposited by r.f. reactive sputtering. X-ray diffraction patterns of $RuO_2$ and LiPON films revealed that crystal structures of both films were amorphous. To decrease resistivity of $RuO_2$ thin film, $RuO_2$ thin film was deposited with $H_2O$ vapor. In order to decide the maximum ionic conductivity, the LiPON films were prepared by various sputtering condition. The maximum ionic conductivity was $9.5\times{10}^7S/cm$. A charge-discharge measurements showed the capacity of $3\times{10-2}\;F/cm^2-\mu{m}$ for the as-fabricated TFSC. The discharging efficiency was decreased after 500 cycles by 40 %.

  • PDF

A Comparison of the Discharged Products in Environmentally Benign Li-O2 and Na-O2 Batteries (친환경의 리튬 - 공기전지와 소듐 - 공기전지의 방전 생성물 비교 분석 연구)

  • Kang, Jungwon
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.82-87
    • /
    • 2016
  • The discharged products of Li-$O_2$ and Na-$O_2$ batteries using ether-based electrolyte as next-generation battery system were analyzed. The morphology of the discharged products showed millet-like shape in the both battery systems by FESEM. However, the discharged product, $Li_2O_2$ showed amorphous-like form in the Li-$O_2$ cell while crystalline $NaO_2$ is formed in the Na-$O_2$ cell when confirmed by X-ray diffraction. In this work, we comprehended a principle operating mechanism of Li-$O_2$ and Na-$O_2$ battery.

Improved Properties of Li4Ti5O2 (LTO) by Surface Modification with Carbon Nanotube (CNT) (CNT 첨가를 통해 표면 처리한 LTO의 특성향상에 관한 연구)

  • Park, Soo-Gil;Kim, Cheong;Habazaki, Hiroki
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.191-195
    • /
    • 2016
  • Among the lithium metal oxides for hybrid-capacity, $Li_4Ti_5O_{12}(LTO)$ is an emerging electrode material as zero-stain material in volume change during the with the charging and discharging processes. However, LTO has a limitation of low ionic and electronic conductivity. To enhance the ionic and electronic properties of $Li_4Ti_5O_{12}(LTO)$, we synthesized the spherical LTO/CNT composite by sol-gel process for hybrid capacitors. CNT interconnection networks between CNT-LTO particles enhanced electronic conductivity and electrochemical charging/discharging properties. All of the LTO samples was observed to show the spinel structure and spherical morphology with the diameter of $5{\sim}10{\mu}m$. Especially, spherical LTO/CNT composite of the CNT-3 wt% showed the enhanced capacity from 110 mAh/g to 140 mAh/g at 10 C.

Preparation and Characteristics of Li4Ti5O12 Anode Material for Hybrid Supercapacitor

  • Lee, Byung-Gwan;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.207-211
    • /
    • 2012
  • Spinel-$Li_4Ti_5O_{12}$ was successfully synthesized by a solid-phase method at 800, 850, and $900^{\circ}C$ according to the $Li_4Ti_5O_{12}$ cubic spinel phase structure. To achieve higher EDLC energy density with the $Li_4Ti_5O_{12}$, the negative electrode of the hybrid supercapacitor was studied in this work. The electrochemical performances of the hybrid supercapacitor and EDLC were characterized by constant current discharge curves, c-rate, and cycle performance testing. The capacitance (1st cycle) of the hybrid supercapacitor and EDLC was 209 and 109 F, respectively, which is higher than EDLC. The capacitance of the hybrid supercapacitor decreases from 209 F to 101 F after 20 cycles when discharged at several specific current densities ranging from 1 to 10 A. In contrast, capacitance of the EDLC hardly decreases after 20 cycles. Results show that hybrid supercapacitor benefits from the high rate capability of supercapacitor and high capacity of the battery. Findings also prove that the hybrid supercapacitor is an energy storage device where the supercapacitor and the Li ion secondary battery coexist in one cell system.

Structural and Magnetic Studies on Electrochemically Lithiated $PrBa_2Cu_3O_y$

  • Choy, Jin-Ho;Chun, Sung-Ho;Kang, Seong-Gu
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.564-567
    • /
    • 1990
  • A lithiated compound $Li_{0.1}Pr^{3+}Ba_2Cu_3O_y$ has been successfully prepared by electrochemical method, which is achieved with a two electrode cell of the type: Metal(Li)/($Li^+\;,\;ClO_4^-$) + propylene carbonate/$PrBa_2Cu_3O_y$. All Pr ions in the lithiated compound are stabilized with a trivalent state as the other rare earths (Ⅲ) substituted in the 90K superconductor lattice ($Y_{1-x}Ln_x^-Ba_2Cu_3O_{7-{\delta}}$). Powder X-ray diffraction analysis shows that both compounds, $PrBa_2Cu_3O_y$ and $Li_{0.1}PrBa_2Cu_3O_y$ are isostructural with the 90 K superconductor, ($YBa_2Cu_3O_{7-{\delta}}$), nevertheless both of them are non-metallic and also non-superconducting down to 10 K. Magnetic susceptibility ${\chi}$ vs. temperature data indicate that Curie contribution from the magnetic ions (Pr and Cu) is weakened on the one hand, but on the other hand temperature-independent part of susceptibility ${\chi}_o$ increases depending upon the rate of lithium intercalation in $PrBa_2Cu_3O_y$ lattice.

Effect of Surface Area and Crystallinity of Amorphous Carbon Conductive Agent in SiOx Anode on the Performance of Lithium Ion Battery (리튬이온전지용 비정질 탄소 도전재의 표면적 및 흑연화도에 따른 SiOx 음극 활물질 특성 연구 )

  • Hyoung-Kyu Kang;Sung-Soo Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2023
  • Herein we investigated the effect of the conductive agent on the electrochemical performance of the SiOx anode. SiOx anodes have a relatively low volume expansion (~160%) compared to Pure-silicon, but have a problem in that they have a poor electrical conductivity characteristic. In this study, physical and electrochemical measurements were performed using two 0-dimensional amorphous carbon conductive agents with different crystallinity and surface area. The crystal structure of the conductive agents and the local graphitization degree were analyzed through XRD and Raman, and the surface area of the particles was observed through BET. In addition, the electrical performance according to the graphitization degree of the conductive agents was confirmed through a 4-point probe. As a result of the electrochemical cycle and rate performance, it was confirmed that the performance of SiOx using a conductive agent having a low graphitization degree and a high surface area was improved. The results in this study suggest that the graphitization degree and surface area of the amorphous carbon conductive agent may play an important role in the SiOx electrode.

Effect of Vinyl Ethylene Carbonate on Electrochemical Characteristics for Activated Carbon/Li4Ti5O12 Capacitors (활성탄/리튬티탄산화물 커패시터의 전기화학적 특성에 미치는 비닐에틸렌카보네이트의 영향)

  • Kwon, Yong-Kab;Choi, Ho-Suk;Lee, Joong-Kee
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.190-197
    • /
    • 2012
  • We employed the vinyl ethylene carbonate (VEC) as an electrolyte additive and investigated the effect of the electrolyte additive on the electrochemical performance in hybrid capacitor. The activated carbon was adopted as cathode material, and the $Li_4Ti_5O_{12}$ oxide was used as anode material. The electrolyte was prepared with the $LiPF_6$ salt in the mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate(EMC). We evaluated the electrochemical performance of the hybrid capacitor with increasing the amount of the VEC electrolyte additive, which is known as the remover of oxygen functional group and the stabilizer of the electrode by reducing the surface of electrode, and obtained the superior performance data especially at the addition of the VEC electrolyte additive of around 0.7 vol%. On the contrary, the addition of the VEC more than 0.7 vol% in the electrolyte leads to the degradation in electrochemical performance of hybrid capacitor, suggesting the increase of the side reaction from the excessive VEC additive. X-ray photoelectron spectroscopy (XPS) revealed that the addition of the VEC suppressed the formation of LiF component, which is known as the insulator, on the surface of electrode. The optimized addition of VEC exhibited the improved capacity retention around 82.7% whereas the bare capacitors without VEC additive showed the 43.2% of capacity retention after 2500 cycling test.