• Title/Summary/Keyword: Listing

Search Result 302, Processing Time 0.019 seconds

APPLICATION OF FUZZY SET THEORY IN SAFEGUARDS

  • Fattah, A.;Nishiwaki, Y.
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1051-1054
    • /
    • 1993
  • The International Atomic Energy Agency's Statute in Article III.A.5 allows it“to establish and administer safeguards designed to ensure that special fissionable and other materials, services, equipment, facilities and information made available by the Agency or at its request or under its supervision or control are not used in such a way as to further any military purpose; and to apply safeguards, at the request of the parties, to any bilateral or multilateral arrangement, or at the request of a State, to any of that State's activities in the field of atomic energy”. Safeguards are essentially a technical means of verifying the fulfilment of political obligations undertaken by States and given a legal force in international agreements relating to the peaceful uses of nuclear energy. The main political objectives are: to assure the international community that States are complying with their non-proliferation and other peaceful undertakings; and to deter (a) the diversion of afeguarded nuclear materials to the production of nuclear explosives or for military purposes and (b) the misuse of safeguarded facilities with the aim of producing unsafeguarded nuclear material. It is clear that no international safeguards system can physically prevent diversion. The IAEA safeguards system is basically a verification measure designed to provide assurance in those cases in which diversion has not occurred. Verification is accomplished by two basic means: material accountancy and containment and surveillance measures. Nuclear material accountancy is the fundamental IAEA safeguards mechanism, while containment and surveillance serve as important complementary measures. Material accountancy refers to a collection of measurements and other determinations which enable the State and the Agency to maintain a current picture of the location and movement of nuclear material into and out of material balance areas, i. e. areas where all material entering or leaving is measurab e. A containment measure is one that is designed by taking advantage of structural characteristics, such as containers, tanks or pipes, etc. To establish the physical integrity of an area or item by preventing the undetected movement of nuclear material or equipment. Such measures involve the application of tamper-indicating or surveillance devices. Surveillance refers to both human and instrumental observation aimed at indicating the movement of nuclear material. The verification process consists of three over-lapping elements: (a) Provision by the State of information such as - design information describing nuclear installations; - accounting reports listing nuclear material inventories, receipts and shipments; - documents amplifying and clarifying reports, as applicable; - notification of international transfers of nuclear material. (b) Collection by the IAEA of information through inspection activities such as - verification of design information - examination of records and repo ts - measurement of nuclear material - examination of containment and surveillance measures - follow-up activities in case of unusual findings. (c) Evaluation of the information provided by the State and of that collected by inspectors to determine the completeness, accuracy and validity of the information provided by the State and to resolve any anomalies and discrepancies. To design an effective verification system, one must identify possible ways and means by which nuclear material could be diverted from peaceful uses, including means to conceal such diversions. These theoretical ways and means, which have become known as diversion strategies, are used as one of the basic inputs for the development of safeguards procedures, equipment and instrumentation. For analysis of implementation strategy purposes, it is assumed that non-compliance cannot be excluded a priori and that consequently there is a low but non-zero probability that a diversion could be attempted in all safeguards ituations. An important element of diversion strategies is the identification of various possible diversion paths; the amount, type and location of nuclear material involved, the physical route and conversion of the material that may take place, rate of removal and concealment methods, as appropriate. With regard to the physical route and conversion of nuclear material the following main categories may be considered: - unreported removal of nuclear material from an installation or during transit - unreported introduction of nuclear material into an installation - unreported transfer of nuclear material from one material balance area to another - unreported production of nuclear material, e. g. enrichment of uranium or production of plutonium - undeclared uses of the material within the installation. With respect to the amount of nuclear material that might be diverted in a given time (the diversion rate), the continuum between the following two limiting cases is cons dered: - one significant quantity or more in a short time, often known as abrupt diversion; and - one significant quantity or more per year, for example, by accumulation of smaller amounts each time to add up to a significant quantity over a period of one year, often called protracted diversion. Concealment methods may include: - restriction of access of inspectors - falsification of records, reports and other material balance areas - replacement of nuclear material, e. g. use of dummy objects - falsification of measurements or of their evaluation - interference with IAEA installed equipment.As a result of diversion and its concealment or other actions, anomalies will occur. All reasonable diversion routes, scenarios/strategies and concealment methods have to be taken into account in designing safeguards implementation strategies so as to provide sufficient opportunities for the IAEA to observe such anomalies. The safeguards approach for each facility will make a different use of these procedures, equipment and instrumentation according to the various diversion strategies which could be applicable to that facility and according to the detection and inspection goals which are applied. Postulated pathways sets of scenarios comprise those elements of diversion strategies which might be carried out at a facility or across a State's fuel cycle with declared or undeclared activities. All such factors, however, contain a degree of fuzziness that need a human judgment to make the ultimate conclusion that all material is being used for peaceful purposes. Safeguards has been traditionally based on verification of declared material and facilities using material accountancy as a fundamental measure. The strength of material accountancy is based on the fact that it allows to detect any diversion independent of the diversion route taken. Material accountancy detects a diversion after it actually happened and thus is powerless to physically prevent it and can only deter by the risk of early detection any contemplation by State authorities to carry out a diversion. Recently the IAEA has been faced with new challenges. To deal with these, various measures are being reconsidered to strengthen the safeguards system such as enhanced assessment of the completeness of the State's initial declaration of nuclear material and installations under its jurisdiction enhanced monitoring and analysis of open information and analysis of open information that may indicate inconsistencies with the State's safeguards obligations. Precise information vital for such enhanced assessments and analyses is normally not available or, if available, difficult and expensive collection of information would be necessary. Above all, realistic appraisal of truth needs sound human judgment.

  • PDF

쿤밍-몬트리올 글로벌 생물다양성 보전목표 성취를 위한 우리나라 OECM 발굴방향 연구 - 개념 고찰 및 전문가 인식을 중심으로 - (A Study on the Identifying OECMs in Korea for Achieving the Kunming-Montreal Global Biodiversity Framework - Focusing on the Concept and Experts' Perception -)

  • 허학영;박선주
    • 한국환경생태학회지
    • /
    • 제37권4호
    • /
    • pp.302-314
    • /
    • 2023
  • 본 연구에서는 생물다양성협약(CBD) 글로벌 보전목표(K-M GBF)의 핵심이라고 할 수 있는 실천목표 3(30by30)에 대한 우리나라의 효과적 대응 방향을 모색하기 위한 것으로, OECM에 대한 글로벌 개념 고찰 및 전문가 인식조사를 통해 국가 차원의 체계적인 OECM 발굴방향을 모색하고자 하였다. 글로벌 표준을 준수하되 한국적 맥락을 반영한 국가 차원의 체계적인 OECM 발굴방향을 모색을 위해 본 연구에서는 ①OECM 관련 한국적 용어 사용, ②글로벌 표준을 반영한 결정인자(criteria) 도출, ③우리나라 잠재 OECM 후보 유형 도출, ④OECM 발굴‧보고 시 고려사항 등을 검토하였다. 먼저 OECM의 단순 번역어 사용이 아닌 이의 개념을 잘 반영한 '한국적 용어' 사용에 대한 공감대 형성이 있었으며, 가장 선호되는 용어이자 '자연과 조화로운 삶'이라는 생물다양성협약(CBD) 2050 비전과도 그 맥락을 같이하는 '자연공존지역(12명)'이 타당한 것으로 나타났다. 글로벌 표준을 반영한 주요 결정인자로는, 1단계 선별과정에서 OECM 핵심 특성을 반영한 4개 결정인자(1. 보호지역 여부, 2. 지리적 경계, 3. 거버넌스‧관리, 4. 생물다양성 가치)를 활용하고, 개별지역 심층진단을 수행하기 전에 관리‧관할기관 등과의 공감대형성(2단계) 과정을 거친 후 3단계(발굴‧보고단계)에서 2가지 결정인자(3-1 거버넌스와 관리의 효과성과 지속성, 4-1의 생물다양성 가치의 장기적 보전성과)를 추가하여 심층 진단을 수행하는 방향을 제시하였다. 본 연구에서 살펴본 28개 유형은 대체적으로 OECM 부합성이 높은 것으로 나타났으며(4.45~6.21점/7점, 평균 5.24점), 특히 자연환경국민신탁의 보전재산(6.21점) 및 보전협약지(6.07점)가 OECM 개념에 가장 잘 부합할 것으로 나타났다. 이어 세계자연유산 완충구역(5.77점), 사찰림(5.73점), 개발제한구역(5.63점), 비무장지대(5.60점), 생물권보전지역 완충구역(5.50점) 등이 잠재성이 높은 것으로 나타났다. 절대보전무인도서의 경우 보호지역에 부합한다는 응답(5.83/7점)이 OECM 부합성(5.52/7점) 보다 더 높게 나타나, 향후 절대보전무인도는 그 주변해역(1km)과 더불어 한국보호지역데이터베이스(KDPA)에 등재를 추진하는 것이 바람직할 것으로 판단된다. OECM 관련 글로벌 표준 검토 및 전문가 인식조사 결과를 토대로, 한국적 맥락의 OECM 발굴시 고려사항으로 10가지를 제시하였다. 향후 이러한 고려사항을 참고하여 단계적인 발굴사업을 통해 OECM을 목록화하고 기존 보호지역과의 연계를 통한 국가 차원의 현지-내 보전체계 정립을 위한 지속적인 연구가 필요할 것으로 판단된다.