• Title/Summary/Keyword: Liquid-Liquid Equilibrium

Search Result 369, Processing Time 0.027 seconds

Numerical Study of Chemical Reaction for Liquid Rocket Propellant Using Equilibrium Constant (평형상수를 이용한 액체로켓 추진제의 화학반응 수치연구)

  • Jang, Yo Han;Lee, Kyun Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.333-342
    • /
    • 2016
  • Liquid rocket propulsion is a system that produces required thrust for satellites and space launch vehicles by using chemical reactions of a liquid fuel and a liquid oxidizer. Monomethylhydrazine/dinitrogen tetroxide, liquid hydrogen/liquid oxygen and RP-1/liquid oxygen are typical combinations of liquid propellants commonly used for the liquid rocket propulsion system. The objective of the present study is to investigate useful design and performance data of liquid rocket engine by conducting a numerical analysis of thermochemical reactions of liquid rocket propellants. For this, final products and chemical compositions of three liquid propellant combinations are calculated using equilibrium constants of major elementary equilibrium reactions when reactants remain in chemical equilibrium state after combustion process. In addition, flame temperature and specific impulse are estimated.

Correlation of Liquid-Liquid Equilibrium of Four Binary Hydrocarbon-Water Systems, Using an Improved Artificial Neural Network Model

  • Lv, Hui-Chao;Shen, Yan-Hong
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.370-376
    • /
    • 2013
  • A back propagation artificial neural network model with one hidden layer is established to correlate the liquid-liquid equilibrium data of hydrocarbon-water systems. The model has four inputs and two outputs. The network is systematically trained with 48 data points in the range of 283.15 to 405.37K. Statistical analyses show that the optimised neural network model can yield excellent agreement with experimental data(the average absolute deviations equal to 0.037% and 0.0012% for the correlated mole fractions of hydrocarbon in two coexisting liquid phases respectively). The comparison in terms of average absolute deviation between the correlated mole fractions for each binary system and literature results indicates that the artificial neural network model gives far better results. This study also shows that artificial neural network model could be developed for the phase equilibria for a family of hydrocarbon-water binaries.

The Prediction of Vapor-Liquid Equilibrium Data for Ethanol/3-methyl-1-butanol System at Constant Temperature (정온하에서 Ethanol/3-methyl-1-butanol계의 기-액평형치 추산)

  • Lee, Joon-Man;Park, Young-Hae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2055-2061
    • /
    • 2013
  • Recently, an understanding of new sources of liquid hydrocarbons such as bio-ethanol is economically very important. Successful design of distillation columns in a separation process depend on the availability of accurate vapor-liquid equilibrium data. For the binary system of Ethanol/3-methyl-l-butanol mixture, isothermal Vapor-liquid equilibrium data were measured at temperature of 50, 55, 60, 65, 70, 75 and $80^{\circ}C$. An empirical relation to predict Vapor-liquid equilibrium data was obtained from the above measured data. The predicted values are compared with the measured ones to be in a good agreement within accuracy of ${\pm}0.0005$, ${\pm}0.0022$.

Investigation on the Self-Pressurization in Cryogenic Liquid Storage System (극저온 유체 저장 시스템의 압력 증가에 대한 연구)

  • Seo, Man-Su;Kim, Young-Kwon;In, Se-Hwan;Jeong, Sang-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.142-147
    • /
    • 2008
  • This paper reports an analysis of self-pressurization in a closed cryogenic liquid storage system and its comparison with experimental data using liquid nitrogen. Partial equilibrium model(PEM), revised thermodynamic analysis of homogeneous model, has been applied for the pressurization in a closed tank. The vapor and liquid bulk temperature and the liquid-vapor interface temperature are separately calculated as their own representative values in this analysis. The analysis results of the partial equilibrium model are compared with the experimental data and other preceding homogeneous temperature models for validation.

  • PDF

Modeling of Liquid-Vapor Interfaces of Condensation Flows Based on Molecular Dynamics Simulations

  • Kannan, Hiroki;Teramoto, Susumu;Nagashima, Toshio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.418-425
    • /
    • 2004
  • Characteristics of a liquid-vapor interface where a nonequilibrium condensation flow exists are considered based on molecular dynamics simulations, The condensation coefficient, the velocity distributions of the reflected and evaporated molecules and the number flux of the evaporated molecules are compared with those under the liquid-vapor equilibrium. The comparison shows that the condensation coefficient under the nonequilibrium condensation is slightly larger and the number flux of the evaporated molecules is considerably smaller than those under the liquid-vapor equilibrium. The net condensation flux under the nonequilibrium condensation is underestimated if it is evaluated from the condensation coefficient and the number flux of the evaporated molecules under the liquid-vapor equilibrium. However the underestimation is relatively small.

  • PDF

Investigation of vapor-liquid equilibrium of HFC125/134a system (HFC125/134a계의 기-액상평형에 관한 연구)

  • 김창년;박영무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.2
    • /
    • pp.238-250
    • /
    • 1998
  • Vapor-liquid equilibrium apparatus is designed and set up. The vapor-liquid equilibrium data of the binary system HFC125/134a are measured in the range between 268.15 and 283.15K at five compositions. Twenty-five equilibrium data are obtained. To verify consistency of these data, they are tested for thermodynamic consistency. Based upon the present data, the binary interaction parameter for CSD and RKS equation of state is calculated at five isotherms and comparison with the data in the open literatures is made. Results of Nagel and Bier are in very good agreements with those from this study within 0.32∼1.11% for bubble point pressure and -0.66∼0.18% for vapor mole fraction.

  • PDF

Investigation of vapor-liquid equilibrium of HFC32/134a system (HFC32/134a 계의 기-액상평형에 관한 연구)

  • Kim, C.N.;Park, Y.M.;Lee, B.K.;An, B.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.527-535
    • /
    • 1997
  • Vapor-liquid equilibrium apparatus is designed and set up. The vapor-liquid equilibrium data of the binary system HFC32/134a are measured in the range between 258.15 and 283.15K at compositions of 0.2, 0.4, 0.6 and 0.8 mole fraction of HFC32. Twenty-two equilibrium data are obtained. Based upon the present data, the binary interaction parameter for Carnahan-Starling-De Santis equation of state is calculated. Temperature range of data is extended to 313.04K using the data in the open literatures. Interaction parameters are determined at nine isotherms.

  • PDF

An Experimental Study of Vapor-Liquid Equilibrium for HFC12S+Propane Refrigerant Mixtures (HFC125+Propane 혼합냉매의 기-액 평형에 관한 실험적 연구)

  • 강준원;박영무;유재석;이종화
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.7
    • /
    • pp.563-571
    • /
    • 2003
  • The forty vapor-liquid equilibrium data of the binary system, HFC125+Propane, were measured between 273.15 and 313.15 K at 10 K interval and the composition range 0.2∼0.75, respectively. Experiments were performed in a circulation type apparatus in which the vapor phase was forced through the liquid phase. The composition at equilibrium were mea-sured by gas chromatography, and its response was calibrated using gravimetrically prepared mixtures. Vapor-liquid equilibrium data were calculated by using CSD equation of state and compared with the experimental data.

Study on the Equilibrium Point of Heat and Mass Transfer between Liquid Desiccant and Humid Air with in the Solar Air Conditioning System

  • Sukmaji, I.C.;Rahmanto, H.;Agung, B.;Choi, K.H.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.161-167
    • /
    • 2009
  • The liquid solar air conditioning system is introduced as an alternative solution to control air condition and to save electrical energy consumption. The heat and mass transfer performances of dehumidifier/regenerator in liquid solar air conditioning system are influenced by air and desiccant condition. The application of this system, the thermal energy from the sun and inlet air are unable to control, but operation parameter of other components such as pump, fan and sensible cooling unit are able to control. The equilibrium point of heat and mass transfer are the liquid desiccant and inlet air conditions, where, the heat and mass are not transferred between the liquid desiccant and vapor air. By knowing equilibrium point of heat and mass transfer, the suitable optimal desiccant conditions for certain air condition are funded. This present experiment study is investigated the equilibrium point heat and mass transfer in various air and desiccant temperature. The benefit of equilibrium point heat and mass transfer will be helpful in choose and design proper component to optimize electrical energy consumption.

  • PDF

The prediction of vapor-liquid equilibrium data for 2-methyl-2-propanol-2-butanone system at low pressure (저압하에서 2-methyl-2-propanol-2-butanone계의 기액평형치의 추산)

  • Shim, Hong-Seub;Rhew, Jong-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.97-105
    • /
    • 2004
  • The Vapor-liquid equilibrium data for the binary system of 2-methyl-2-propanol-2-butanone are measured at subatmospheric pressure of 100, 200, 300, 400, 500, 600, 700 and 760 torr. This study shows that the relations between logarithmic values of relative valatility(log ${\alpha}$)and liquid phase composition(${\chi}$) in the above binary systems are expressed as a linear function. When the linear relationships of between logarithmic values of relative volatilities and liquid phase compositions in the binary systems of various pressure intersect at a point, this empirical equation can be applied to the systems of this kind. From these relations the vapor-liquid equilibrium data are estimated and compared with the measured values to be in a good agreement with in accuracy ${\pm}0.0021$ for the various pressure.

  • PDF