• Title/Summary/Keyword: Liquid-Cooling

Search Result 895, Processing Time 0.025 seconds

Experimental Investigation of the LRE Thrust Chamber Regenerative Cooling. (액체로켓엔진 추력실의 재생냉각에 관한 실험적 연구 (I))

  • Park, Kye-Seung;Kim, Yoo;Kim, Tae-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.2
    • /
    • pp.54-61
    • /
    • 2003
  • This paper describes a general design procedure of regenerative cooling system for liquid rocket engine(LRE). From this design logic, cooling channels are designed and fabricated. The measured heat flux from firing test is similar to the heat flux predicted by design logic. Therefore, proposed design procedure of cooling channel can be applied to real LRE system. Also the result of firing test indicates that soot from combustion products have strong influence on the cooling characteristics of LRE.

An Experimental study on heat transfer of a falling liquid film in air channel flow (채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구)

  • Oh, Dong-Eun;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2291-2296
    • /
    • 2007
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate form the heated surface is increased as the air flow rate is increased.

  • PDF

An Analysis of Heat Transfer and Pressure Drop Characteristics for Optimum Design of Cryogenic Heat Exchanger used for Liquid Nitrogen Cooling (액체질소 냉각용 극저온 열교환기의 최적설계를 위한 열전달 및 압력강하 특성 분석)

  • Ko, Ji Woon;Jeon, Doong Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.1
    • /
    • pp.24-32
    • /
    • 2018
  • In this paper, analytical studies were conducted to obtain optimal design factors and analysis parameters of liquid nitrogen cooling exchanger applied in cryogenic refrigerator. The target value of heat transfer rate was more than 1 kW and pressure drop was less than 40 kPa. Design factors of cryogenic heat exchanger included width of channel and configuration of paths. Analytical factors of liquid nitrogen cooling exchanger included temperatures of coolant header surface and inlet liquid nitrogen. The width and number of channels in the design parameters were 0.0050~0.0150 m and 4~8, respectively. The configuration of channel path was 4 ways. Temperatures of coolant header surface and inlet liquid nitrogen in analytical parameters were 74 to 78K and 82 to 86K, respectively. As result, the design factor and analysis parameter satisfying the target values were obtained. The biggest heat transfer rate was 1.36 kW with pressure drop of 32.26 kPa.

An Experimental Study on Heat Transfer of a Falling Liquid Film in Air Channel Flow (채널내 공기유동이 있는 유하액막의 열전달특성에 관한 실험적 연구)

  • Oh, Dong-Eun;Kang, Byung-Ha;Kim, Suk-Hyun;Lee, Dae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.5
    • /
    • pp.335-341
    • /
    • 2008
  • Thermal transport from vertical heated surface to falling liquid film in a channel has been investigated experimentally. Air-flow is introduced into channel to make a counter flow against falling liquid film. This problem is of particular interest in the design of direct contact heat exchange system, such as cooling tower, evaporative cooling system, absorption cooling system, and distillation system. The effects of channel width and air flow rate on the heat transfer to falling liquid film are studied in detail. The results obtained indicate that heat transfer rate is gradually decreased with an increase in the channel width without air flow as well as with air flow in a channel. It is also found that heat transfer rate of air-flow is increased while heat transfer rate of falling liquid film is decreased with an increase in the air flow rate at a given channel width. However, total heat transfer rate from the heated surface is increased as the air flow rate is increased.

Effect of Mixture Ratio Variation near Chamber Wall in Liquid Rocket Engine

  • Han, Poong-Gyoo;Kim, Kyoung-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.51-60
    • /
    • 2003
  • An experimental research program is being undertaken to develop a regeneratively-cooled experimental thrust chamber of liquid rocket engine using liquefied natural gas and liquid oxygen as propellants. Prior to firing test using a regenerative cooling with liquefied natural gas in this program, several firing tests were conducted with water as a coolant. Experimental thrust chambers with a thrust of about 10tf were developed and their firing test facility was built up. Injector used in the thrust chamber was of shear-coaxial type appropriate for propellants of gas and liquid phase and cooling channels are of milled rectangular configuration. Periodical variation of the soot deposition and discoloration was observed through an eyes' inspection on the inner wall of a combustion chamber and a nozzle after each firing test, and an intuitive concept of the periodical variation of mixture ratio near the inner wall of a combustion chamber and a nozzle at once was brought about and analyzed quantitatively. Thermal heat flux to the coolant was calculated and modified with the periodical variation model of mixture ratio, and the increment of coolant temperature at cooling channels was compared with measured one.

A Study on Thermal Performance of Microchannel Waterblock for Cooling of CPU in Desktop (컴퓨터 CPU 냉각용 미세채널 워터블록의 열성능에 관한 연구)

  • Choi, Mi-Jin;Kwon, Oh-Kyung;Cha, Dong-An;Yun, Jae-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.264-269
    • /
    • 2007
  • The microchannel waterblock has a good capability in the cooling of electronic devices. The object of this paper is to study on thermal performance of microchannel water block for cooling of CPU in desktop. The effects of header shape, liquid flow rate, and inlet temperature on the thermal performances of microchannel waterblock are investigated experimentally. Three types of waterblock with different header shape are manufactured from the micro milling and brazing processing. The experiments are conducted using water, over a liquid flow rate ranging from 0.7 to 2.0 LPM and inlet temperature ranging from 20 to $35^{\circ}C$. Waterblocks are attached both horizontally and vertically on the test section to anticipate a performance of waterblock under the actual state in computer. The base temperature and thermal resistance decrease with increasing of liquid flow rate. It was found that the sample #1 was appropriate for the prototype of liquid cooling system.

  • PDF

Preparation of PVDF Membrane by Thermally-Induced Phase Separation

  • Heo, Chi-Haeng;Lee, Kyung-Mo;Kim, Jin-Ho;Kim, Sung-Soo
    • Korean Membrane Journal
    • /
    • v.9 no.1
    • /
    • pp.27-33
    • /
    • 2007
  • PVDF membrane formation via TIPS was performed for PVDF/DBP and PVDF/DMP systems. PVDF/DBP system showed solid-liquid phase separation behavior, while PVDF/DMP system has liquid-liquid phase separation characteristic as well as solid-liquid phase separation characteristic. PVDF contents and cooling conditions had great influence on structure, and the effects of each parameter were examined. Spherulitic structure was obtained due to the dominant PVDF crystallization. Diluent rejected to the outside of spherulite occupied the surface of the PVDF spherulites to result in the microporous spherulite formation and micro-void between spherulites. PVDF/DMP system had competitive solid-liquid and liquid-liquid phase separation depending on the cooling path.

Research Activities of Transpiration Cooling for High-Performance Flight Engines (고성능 비행체 엔진을 위한 분출냉각의 연구동향)

  • Hwang, Ki-Young;Kim, You-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.966-978
    • /
    • 2011
  • Transpiration cooling is the most effective cooling technique for the high-performance liquid rockets and air-breathing engines operating in aggressive environments with higher pressures and temperatures. When applying transpiration cooling, combustor liners and turbine blades/vanes are cooled by the coolant(air or fuel) passing through their porous walls and also the exit coolant acting as an insulating film. Practical implementation of the cooling technique has been hampered by the limitations of available porous materials. But advances in metal-joining techniques have led to the development of multi-laminate porous structures such as Lamilloy$^{(R)}$ fabricated from several diffusion-bonded, etched metal thin sheets. And also with the availability of lightweight, ceramic matrix composites(CMC), transpiration cooling now seems to be a promising technique for high-performance engine cooling. This paper reviews recent research activities of transpiration cooling and its applications to gas turbines, liquid rockets, and the engines for hypersonic vehicles.

Evaluation of Effects of Rare Earth Element and Cooling Rate on the Eutectic Reaction of Flake Graphite Cast Irons by Cooling Curve Analysis (냉각곡선 분석을 통한 편상흑연주철의 공정반응에 미치는 희토류원소 및 냉각속도의 영향 평가)

  • Lee, Sang-Hwan;Park, Seung-Yeon;Lee, Sang-Mok;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.33 no.1
    • /
    • pp.13-21
    • /
    • 2013
  • The effects of rare earth element (R.E.) and cooling rate on the eutectic reaction of flake graphite cast irons were studied by combined analysis of macro/micro-structure and cooling curve data. The correlation between eutectic reaction parameter and macro/micro-structure was systematically investigated. Two sets of chemical compositions with the different addition of R.E. were designed to cast. Three types of molds for cylindrical specimens with the different diameters were prepared to analyze cooling rate effect. The difference between undercooling temperature and cementite eutectic temperature (${\Delta}T_1=T_{U}-T_{E,C}$), which is increased by adding R.E. and decreased by increasing cooling rate, is considered to be a suitable eutectic reaction parameter for predicting graphite morphology. According to the criterion, A-type graphite is mainly suggested to form for ${\Delta}T_1$ over $20^{\circ}C$. Eutectic reaction time (${\Delta}t$), which is decreased by adding R.E. or increasing cooling rate, is a suitable eutectic reaction parameter for predicting eutectic cell size. Eutectic cell size is found to decrease in a proportion to the decrease of ${\Delta}t$.

Effects of artificial holes on the cooling efficiency of single grain Y1.5Ba2Cu3O7-y bulk superconductors (단결정 Y1.5Ba2Cu3O7-y 벌크 초전도체의 냉각효율에 대한 인공 구멍의 효과)

  • Kim, Kwang-Mo;Park, Soon-Dong;Jun, Byung-Hyuk;Ko, Tae-Kuk;Kim, Chan-Joong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.1-4
    • /
    • 2012
  • Effects of artificial holes on the cooling efficiency of single grain YBCO bulk superconductors were studied. Single grain YBCO bulk superconductors without artificial holes, with six 2.4 mm holes and six holes filled with Bi-Pb-Cd-Sn metal solder were fabricated by a top-seeded melt growth process for powder compacts with/without holes. Simulation for the cooling rate to a liquid nitrogen temperature (77 K) of YBCO samples was carried out using a finite element method (FEM) and the results are compared with the actual cooling rates of samples in liquid nitrogen. The simulated cooling times for the YBCO sample without holes, with six holes and with six holes filled with the metal solder were 80, 47 and 75 sec. respectively, which are similar to the actual cooling times of 84, 52 and 78 sec. estimated for the same samples cooled in liquid nitrogen. The shorter cooling time of the sample with artificial holes are attributed to the increased surface areas associated with the presence of artificial holes. The metal filling into the holes did not give any remarkable effect on the cooling efficiency.