• Title/Summary/Keyword: Liquid transfer

Search Result 1,331, Processing Time 0.024 seconds

Reactions of Aryl Halides with Phenoxides and Alkoxides by Phase Transfer Catalysis

  • Jo, Bong Rae;Park, Seong Dae
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.3
    • /
    • pp.126-129
    • /
    • 1984
  • The reaction of aryl halides with phenoxides and alkoxides were investigated under phase transfer catalytic conditions. 2,4-Dinitro- and 4-nitrohalobenzenes reacted readily with phenoxides in NaOH(aq)-benzene in the presence of Bu4N+Br, affording the products quantitatively. Although the aryl halides did not react with alkoxides under the same condition, the reactions were completed within 2 hours at room temperature when conducted under solid-liquid phase transfenr catalytic condition. The reactivity of aryl halides was in the order, Ar = 2,4-dinitrophenyl > 4-nitrophenyl, and X = F > Cl, consistent with the SNAr mechanism. The reactivity of oxyanions increased with the change of reaction condition from liquid-liquid to solid-liquid phase transfer catalysis. The results were explained with the concentration and the degree of hydration of the anion in benzene.

An Experimental Study on the Heat Transfer Characteristics of Corrugated Impinging Jets (파형 충돌분류의 열전달 특성에 관한 실험적 연구)

  • Kim, Ye Yong;Kim, Kui Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.320-329
    • /
    • 1999
  • An experimental study has been performed to investigate the heat transfer characteristics of impinging jets with corrugated nozzle and wake generation plate. Three different shapes of corrugated nozzle and five different shapes of wake generation plate were tested to improve the heat transfer characteristics of impinging jet. Heat transfer coefficients were obtained by using transient method based on the liquid crystal thermography. The effects of corrugated nozzle and wake generation plate on the heat transfer characteristics of impinging jets were discussed in detail. The results showed that both the corrugated nozzle and the wake generation plate improved the heat transfer characteristics of impinging jet. Especially, heat transfer coefficients around stagnation region of impinging jets were highly increased.

The Experimental Study on Mist Cooling Heat Transfer (초음파진동을 이용한 미세분무냉각 열전달에 관한 실험적 연구)

  • Kim, Yeung-Chan
    • Journal of ILASS-Korea
    • /
    • v.15 no.4
    • /
    • pp.202-207
    • /
    • 2010
  • Mist cooling is widely employed as a cooling technique of high temperature surfaces, and it has heat transfer characteristics similar to boiling heat transfer which has the convection, nucleate and film boiling regions. In the present study, mist cooling heat transfer was experimentally investigated for the mist flow impacting on the heated surfaces of mico-fins. The mist flow was generated by supersonic vibration. Experiments were conducted under the test conditions of droplet flow rate, $Q=6.02{\times}10^{-9}{\sim}3.47{\times}10^{-8}\;m^3/s$ and liquid temperature, $T_f=30{\sim}35^{\circ}C$. From the experimental results, it is found that an increase in the droplet flow rate improves mist cooling heat transfer in the both case of smooth surface and surfaces of micro-fins. Micro-fins surfaces enhance the mist cooling heat transfer. Besides, the experimental results show that an increase in the droplet flow rate decrease the heat transfer efficiency of mist cooling.

Measurement of Heat Transfer and Pressure Distributions on a Gas Turbine Vane Endwall (가스터빈 베인 끝벽의 열전달 특성 및 정압분포 측정)

  • Lee, Yong-Jin;Shin, So-Min;Kwak, Jae-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.33-38
    • /
    • 2006
  • Heat transfer coefficients and static pressure distributions on a gas turbine vane endwall were experimentally investigated in a 5 bladed linear cascade. The Reynolds number based on an axial chord length and the cascade exit velocity was 500,000. Both heat transfer and pressure measurements on the vane endwall were made at the two different turbulence intensity levels of 6.8% and 10.8%. Detailed heat transfer coefficient distributions on the vane endwall region were measured using a hue detection based transient liquid crystals technique. Results show various regions of high and low heat transfer coefficients on the vane endwall surface due to several types of secondary flows and vortices. Heat transfer coefficient and endwall static pressure distributions showed similar trends for both turbulence intensity, however, the averaged heat transfer coefficients for higher turbulence intensity case was higher than the lower turbulence intensity case by 15%.

  • PDF

An Experimental Investigation of the Heat Transfer Characteristics on the Endwall Surface Within the Plane Turbine Cascade (선형 터빈케스케이드 끝벽의 열전달 특성에 관한 연구)

  • 양장식;나종문;이기백
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2386-2398
    • /
    • 1995
  • The paper describes the results of an experimental investigation of the heat transfer rate on the endwall surface within the plane turbine cascade passage and includes the effect of the heat transfer for the two different boundary layer thicknesses and Reynolds numbers. The limiting streamlines on the endwall surface have been visualized by the oil film method in order to compare with the endwall heat transfer. The hue-capturing method using the termochromatic liquid crystals with great spatial resolution has been used to provide the local distribution of the endwall heat transfer coefficients. Because the detailed contours of the local heat transfer coefficients over the entire endwall can be obtained from the hue-capturing method, it has been possible to obtain information on the endwall heat transfer within the plane turbine cascade passage from these heat transfer contours.

An experimental study on the heat transfer augmentation by using the multiple orifice nozzle (다중 오리피스 노즐을 이용한 충돌분류의 열전달 향상에 관한 실험적 연구)

  • 김예용;정기호;김귀순;서태범
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.647-657
    • /
    • 1999
  • An experimental study has been peformed to investigate the heat transfer characteristics of impinging jets with multiple orifice nozzles. Four different shapes of multiple orifice nozzle were tested to improve the heat transfer characteristics of impinging jet. Heat transfer coefficients were obtained by using transient and steady method based on the liquid crystal thermography, and both methods showed very similar results. The effects of multiple orifice nozzles on the heat transfer characteristics of impinging jets were discussed in detail. The results showed that multiple orifice nozzles improved the heat transfer characteristics of impinging jet. Especially, heat transfer coefficients around stagnation region of impinging jets were highly increased.

  • PDF

A study on Removal of $NH_3$ Gas in a Towar using a Ralu-Pack 250YC as a Packing Material (Ralu-Pack 250YC를 충전한 충전탑에서 암모니아가스 제거에 관한 연구)

  • 김석택
    • Journal of Environmental Science International
    • /
    • v.9 no.5
    • /
    • pp.389-392
    • /
    • 2000
  • In this study a packed tower was selected for the treatment apparatus of $NH_3$ gas produced in industry. Formerly latticework packing has been used in preventive facility of treatment of $NH_3$ gas. However recently metallic Ralu-Pack 250YC. structured packing is usually being used in petrochemical production plant. This study is for the application the packing to the $NH_3$ gas treatment in wet scrubbing process. In Air/water system hydraulic pressure drop dependent of specific liquid load and gas capacity factor was continuous and parallel from graph. The tower height can be determuined by the number of transfer unit and the height of transfer unit influenced on liquid distribution.

  • PDF

Two-phase flow and heat transfer characteristics in a submerged gas injection system (잠겨진 가스분사장치에서의 2상 유동 및 열전달 특성)

  • 최청렬;김창녕
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.824-834
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas injection system when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for both the continuous and dispersed phases. The turbulence in the liquid phase was modeled using the standard $k-\varepsilon$$\varepsilon$ turbulence model. The interphase friction and heat transfer coefficient were calculated from the correlations available in the literature. The turbulent dispersion of the phases was modeled by a "dispersion Prandtl number". In the case with heat transfer where the temperature of the injected gas is higher than the mean liquid temperature, the axial and the radial velocities are lower in comparison with the case of homogeneous temperatures. The results in the present research are of interest in the design and operation of a wide variety of material and chemical processes.

  • PDF

Heat Transfer in Bubble Columns with High Viscous and Low Surface Tension Media (고점성 낮은표면장력 매체 기포탑에서 열전달)

  • Kim, Wan Tae;Lim, Dae Ho;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.516-521
    • /
    • 2014
  • Axial and overall heat transfer coefficients were investigated in a bubble column with relatively high viscous and low surface tension media. Effects of superficial gas velocity (0.02~0.1 m/s), liquid viscosity ($0.1{\sim}0.3Pa{\cdot}s$) and surface tension ($66.1{\sim}72.9{\times}10^{-3}N/m$) on the local and overall heat transfer coefficients were examined. The heat transfer field was composed of the immersed heater and the bubble column; a vertical heater was installed at the center of the column coaxially. The heat transfer coefficient was determined by measuring the temperature differences continuously between the heater surface and the column which was bubbling in a given operating condition, with the knowledge of heat supply to the heater. The local heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing axial distance from the gas distributor and liquid surface tension. The overall heat transfer coefficient increased with increasing superficial gas velocity but decreased with increasing liquid viscosity or surface tension. The overall heat transfer coefficient was well correlated in terms of operating variables such as superficial gas velocity, liquid surface tension and liquid viscosity with a correlation coefficient of 0.91, and in terms of dimensionless groups such as Nusselt, Reynolds, Prandtl and Weber numbers with a correlation of 0.92; $$h=2502U^{0.236}_{G}{\mu}^{-0.250}_{L}{\sigma}^{-0.028}_L$$ $$Nu=325Re^{0.180}Pr^{-0.067}We^{0.028}$$.

Polarized Light Emission of Liquid Crystalline Polymer Blends (액정성 고분자 블렌드의 편발광)

  • 김영철;조현남;김동영;홍재민;송남웅
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.211-219
    • /
    • 2000
  • Fluorene-based light emitting polymer blends with liquid crystalline characteristics were studied on effective energy transfer and dichroic characteristics. Incorporating 0.5 wt% of the non-liquid crystalline into the liquid crystalline polymer suppressed the PL emission at 420 nm on photoexcitation at 360 nm, but generated a new PL emission of the non-liquid crystalline polymer at 480 nm. The highest PL intensity at 480 nm, which was 13 times stronger than those of the two polymers before blending, was observed for a blend with 2.0 wt% of the non-liquid crystalline polymer. When the molecules of the blends were aligned on a rubbed polyimide surface by a heating-cooling process, the dichroic ratio and the order parameter were 2.0 and 0.25, respectively. Time-correlated single photon counting (TCSPC) study revealed that the time required for energy transfer between the two chromophores was shortened by 93 ps when the blends were aligned on the rubbed polyimide surface by the heating-cooling process. The thermal treatment also enhanced the energy transfer efficiency by 9%.

  • PDF