• Title/Summary/Keyword: Liquid transfer

Search Result 1,335, Processing Time 0.029 seconds

A Study on the Condensation Performance for the Horizontal Heat Transfer Tubes with Various Fin Attached (형상이 다른 수평 원형 전열관의 응축 성능에 관한 연구)

  • Han, Kyu-Il;Park, Jong-Un
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.4 no.1
    • /
    • pp.47-61
    • /
    • 1992
  • An experimental study was carried out to investigate the condensation performance for the horizontal cylindrical heat transfer tube with various fin attached using R-11 vapor. The heat transfer tube used in this study was supplied by SUNG HYUNG METAL CO., LTD. Four different types of heat transfer tubes (plain tube, SH-CYR tube, thermocor tube and thermoexcel tube) were used. Each tube was surrounded by circular acrylate tube, and R-11 gas heated by boiler flows into the acrylate tube. Cooling water counter-flows in heat transfer tubes. Heat transfer coefficient of the plain tube from measured data was compared with those of three other tubes. The results are summarized as follows: 1. As the cooling water temperature decreased, the liquid film of R-11 turned to droplet drop on the top surface of the horizontal tube. 2. Heat transfer coefficient calculated theoretically was higher than that obtained from the experimental data. 3. As far as the condensation concerns the thermocor tube is the highest, the SH-CYR tube is the second, and the thermoexcel tube is the third excluding the plain tube.

  • PDF

Condensation Heat Transfer Characteristics of Non-Azeotropic Refrigerant Mixture(NARMs) Inside Double Pipe Heat Exchangers (2중 관형 열교환기내 비공비혼합냉매 R-22+R134a의 응축열전달 특성에 관한 연구)

  • 노건상;오후규;권옥배
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.91-100
    • /
    • 1996
  • Experimental results for forced convection condensation of non-azeotropic refrigerant mixtures inside a horizontal smooth tube are presented. The mixtures of R-22+R-134a and pure refrigerants R-22 and R-134a are used as the test fluids and a double pipe heat exchanger of 7.5mm ID and 4800mm long inside tube is used. The range of parameters are 100-300kg/h of mass flow rate, 0-1.0 of quality, and 0, 33, 50, 67, and 100 weight percent of R-22 mass fraction in the mixtures. The heat flux, vapor pressure, vapor temperature and tube wall temperature were measured. Using the data, the local and average heat transfer coefficients for the condensation have been obtained. In the same given experimental conditions, the liquid heat transfer coefficients for NARMs were considerally lower than that of the pure refrigerant of R-22 and R-134a. Local heat transfer characteristics for NARMs were different from pure refrigerant R-22 and R-134a. In some regions, local heat transfer coefficients for NARMs were increased in the following order ; Bottom$\rightarrow$Top$\rightarrow$Side. The condensation heat transfer coefficients for NARMs increased with mass velocity, heat flux, and quality, but were considerably lower than that of pure refigerant R-22 and R-134a.

  • PDF

Numerical investigation of film boiling heat transfer on the horizontal surface in an oscillating system with low frequencies

  • An, Young Seock;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.918-924
    • /
    • 2020
  • Film boiling is of great importance in nuclear safety as it directly influences the integrity of nuclear fuel in case of accidents involving loss of coolant. Recently, nuclear power plant safety under earthquake conditions has received much attention. However, to the best of our knowledge, there are no existing studies reporting film boiling in an oscillating system. Most previous studies for film boiling were performed on stationary systems. In this study, numerical simulations were performed for saturated film boiling of water on a horizontal surface under low frequencies to investigate the effect of system oscillation on film boiling heat transfer. A coupled level-set and volume-of-fluid method was used to track the interface between the vapor and liquid phases. With a fixed oscillation amplitude, overall, heat transfer decreases with oscillation frequency. However, there is a frequency region in which heat transfer remains nearly constant. This lock-on phenomenon occurs when the oscillation frequency is near the natural bubble release frequency. With a fixed oscillation frequency, heat transfer decreases with oscillation amplitude. With a fixed maximum amplitude of the additional gravity, heat transfer is affected little by the combination of oscillation amplitude and frequency.

DEVELOPMENT OF A GENERAL PURPOSE THERMO/FLUID FLOW ANALYSIS PROGRAM NUFLEX WITH WALL IMPINGEMENT AND HEAT TRANSFER ANALYSIS MODEL OF LIQUID FILM (충돌분무와 액막의 열전달 해석모델을 고려한 범용 열/유체 프로그램 NUFLEX의 개발)

  • Kim, H.J.;Ro, K.C.;Ryou, H.S.;Hur, N.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.68-72
    • /
    • 2008
  • NUFLEX is a general purpose thermo/fluid flow analysis program which has various physical models including spray. In NUFLEX, spray models are composed of breakup and collision models of droplet. However, in case of diesel engine, interaction between wall-film and impingement model considering heat transfer is not coded in NUFLEX. In this study, Lee & Ryou impingement & wall-film model considering heat transfer is applied to NUFLEX. For the verification of this NUFLEX program, numerical results are compared with experimental data. Differences of film thickness and radius between numerical results and experimental data are within 10% error range. The results show that NUFLEX can be used for comprehensive analysis of spray phenomena.

Effects of Flame Transfer Function on Modeling Results of Combustion Instabilities in a 3 Step Duct System (3단 덕트 시스템에서 화염전달함수가 연소불안정 모델링 결과에 미치는 영향)

  • Hong, Sumin;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.119-125
    • /
    • 2020
  • In this paper, we used Helmholtz solver based on 3D finite element method to quantitatively analyze the effects of change of gain, time delay and time delay spread, which are the main variables of flame transfer function, on combustion instability in gas turbine combustor. The effects of the variable of flame transfer function on the frequency and growth rate, which are the main results of combustion instability, were analyzed by applying the conventional heat release fluctuation model and modified one considering the time spread. The analysis results showed that the change of gain and time delay in the same resonance mode affected the frequency of the given resonance modes as well as growth rate of the feedback instability, however, the effect of time delay spread was not relatively remarkable, compared with the dominant effect of time delay.

Research on the Inverse Heat Conduction Problem for Thermal Analysis of a Large LPG Engine Piston (대형 LPG 엔진 피스톤의 온도 분포 해석을 위한 열전도 역문제에 관한 연구)

  • 이부윤;박철우;최경호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.146-159
    • /
    • 2002
  • An efficient method to predict the convection heat transfer coefficients on the top surface of the engine piston is proposed. The method is based on the inverse method of the thermal conduction problem and uses a numerical optimization technique. In the method, the heat transfer coefficients are numerically obtained so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. The method can be effectively used to analyze the temperature distribution of engine pistons in case when application of prescribed-temperature boundary condition is not reasonable because of insufficient number of measured temperatures. A hollow sphere problem with an analytic solution is taken as a simple example and accuracy and efficiency is demonstrated. The method is applied to a practical large liquid petroleum gas(LPG) engine piston and the heat transfer coefficients on the top surface of the piston is successfully calculated. Resulting analyzed temperature favorably coincides with measured temperature.

Heat Transfer with Phase Change between Two Isothermal Horizontal Plates (두 등온 수평 평판 사이의 상변화 열전달)

  • Suh, Y.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.4 no.4
    • /
    • pp.323-331
    • /
    • 1992
  • A two-dimensional Benard-convection system with a phase-change material inside has been analysed. The main purpose of the present study is to clarify the basic reason of the hysteresis found by the previous investigators. The interface between the solid and the liquid is assumed to be planar. The analysis was performed with heat transfer rates under the steady state on the interface. It was found that the hysteresis occurs due to the abrupt increase in the heat transfer rate at the onset of natural convection in the classical Benard-convection system. The spectral method was applied to obtain the steady solution of the natural convection for the specific material and to confirm the hysteresis phenomenon.

  • PDF

Measurement of Film Cooling Effectiveness and Heat Transfer of Rectangular-Shaped Film Cooling Holes (사각홀에서 막냉각 효율 및 열전달계수의 측정)

  • 이윤석;이동호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.365-376
    • /
    • 2002
  • An experimental study has been conducted to measure the local film-cooling effectiveness and the heat transfer coefficient for a single row of rectangular-shaped holes. four different cooling hole shapes such ai a straight rectangular hole, a rectangular hole with laterally expanded exit, a circular hole and a two-dimensional slot are tested. A technique using thermochromic liquid crystals determine adiabatic film cooling effectiveness values and heat transfer coefficients on the test surface. Both film cooling effectiveness and heat transfer coefficient are measured for various blowing rates and compared with the results of the cylindrical ho1es and the two-dimensional slot. The flow patterns downstream of holes are calculated numerically using a cummercial package. The results show that the rectangular hopes provide better peformance than the cylindrical holes. For the rectangular holes with expanded exit, the penetration is reduced significantly, and the higher and more uniform cooling Peformance is obtained even at relatively high blowing rates.

Development of a general purpose thermo/fluid flow analysis program NUFLEX with heat transfer analy sis model of impinging liquid film (충돌분무 액막의 열전달 해석모델을 고려한 범용 열/유체 프로그램 NUFLEX의 개발)

  • Kim, Hyun-Jeong;Ro, Kyoung-Chul;Ryou, Hong-Sun;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.71-74
    • /
    • 2008
  • NUFLEX is a general purpose thermo/fluid flow analysis program which has various physical models including spray. In NUFLEX, spray models are composed of breakup and collision models of droplet. However, in case of diesel engine, interaction between wall-film and impingement model considering heat transfer is not coded in NUFLEX. In this study, Lee & Ryou impingement & wall-film model considering heat transfer is applied to NUFLEX. For the verification of this NUFLEX program, numerical results are compared with experimental data. Differences of film thickness and radius between numerical results and experimental data are within 10% error range. The results show that NUFLEX can be used for comprehensive analysis of spray phenomena.

  • PDF

A Study on the Spray Cooling Characteristics on the Angle of Hot Heat Transfer Surface (고온 열전달면의 각도에 따른 분무냉각특성에 관한 연구)

  • Yoon, D.H.;Kim, K.K.;Kim, M.H.;Oh, C.;Yoon, S.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.8-14
    • /
    • 2001
  • The purpose of this study is to elucidate heat characteristics according to inclination angle of the hot flat plate at the spray cooling. As results of this experiment, the heat flux, the heat transfer coefficient and the cooling speed are increased as the liquid volume flux and subcooled temperature go up. And as the inclination angle of the heat transfer surface is increased, the cooling speed on the inclined flat plate becomes faster. It means that the cooling ability is increased because droplets were excluded by gravity.

  • PDF