• Title/Summary/Keyword: Liquid sheets

Search Result 89, Processing Time 0.021 seconds

An experimental study on flow distribution and mixing in impinging jets (충돌제트의 유량분포 및 혼합특성에 관한 실험적 연구)

  • Lee, Chung-Hun;Jeong, Yeong-Ho;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.99-112
    • /
    • 1997
  • Mixing process of impinging jets of liquid oxidizer and liquid fuel is simulated by using water and sodium carbonate (Na$_{2}$CO$_{3}$) solution. The shapes of liquid sheets are visualized and flowrate distributions are measured by collecting droplets using measuring cells. Mixing charateristics are studied by using acid-base titration. Stable liquid sheets are formed and two liquid jets are well mixed for symmetric impinging jets. Similarity in flowrate distribution for various measuring heights is observed. For asymmetric impinging jets, liquid sheets become unstable as the difference in the velocities of jets increases. In some extreme cases, liquid sheets are not formed and the jets are separated. Dimensionless variables are adopted demonstrating similarly in flowrate distribution. Mixing characteristics vary significantly with experiment conditions.

Prediction of drop size by analysis of conical liquid sheet breakup (원추형 액막분열 해석에 의한 액적 크기 예측)

  • Yoon, S.J.;Cho, D.J.
    • Journal of ILASS-Korea
    • /
    • v.2 no.1
    • /
    • pp.8-17
    • /
    • 1997
  • A study has been carried out on the instability of a conical liquid sheet by using the linear instability theory. Various analytical methods using the Kelvin-Helmholtz instability theory were tried to examine the wave growth on cylindrical liquid sheets. Cylinderical liquid sheets were extended to the case with the conical sheets. Perturbations due to tangential motion as well as longitudinal one were taken into account. And it was assumed the the breakup occurs when amplitude ratio exceeds exp(12), drop sizes were predicted only by theoretical approach. The predicted drop size agreed well with the measured Sauter mean diameter, $D_{32}$.

  • PDF

The Effects of Orifice Internal Flow on the Breakup Characteristics of Liquid Sheets Formed by Like-Doublet Injectors (오리피스 내부유동에 따른 like-doublet 인젝터의 분열 특성)

  • Jung, K.H.;Khil, T.O.;Yoon, Y.B.
    • Journal of ILASS-Korea
    • /
    • v.7 no.4
    • /
    • pp.32-41
    • /
    • 2002
  • The breakup characteristics of liquid sheets formed by like-doublet injector were investigated in the cold-flow and atmospheric ambient pressure condition. The sheet breakup wavelength, which induces the sheet to be broken into ligaments, as well as the sheet breakup length, which is important for the flame location, was measured using a stroboscopic light. The liquid ligaments are formed intermittently after the breakup of sheet, and the wavelength of ligaments has been believed to have a relation to the combustion instability of liquid rocket engine. Therefore, the wavelength of ligaments and the breakup length of ligaments into fine drops were also measured. Since these spray characteristics are affected by the flow characteristics of two liquid jets before they impinge on each other, we focused on the effects of orifice internal flow such as the cavitation phenomenon that occurs inside the sharp-edged orifice. From the experimental results, we found that the liquid jet turbulence delays the sheet breakup and makes shorter wavelengths for both sheets and ligaments. Since the turbulent strength of sharp-edged orifice is stronger than that of round-edged orifice, the shape of orifice entrance results in large differences in the spray characteristics. Using these results, we proposed empirical models on the spray characteristics of the like-doublet injector, and these models are believed to provide some useful and actual data for designing liquid rocket combustors.

  • PDF

Synthesis of Thermally Reduced Graphene Sheets Using Poly(ionic liquid)

  • Lee, Hyun-Wook;Kim, Tae-Young;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.256-256
    • /
    • 2010
  • It is demonstrated that graphene sheets are produced via thermal reduction of graphene oxide (GO) in the presence of imidazoium-based poly (ionic liquid) (PIL). PILs plays an important role in minimizing the reduction time and dispersing graphene sheets in organic solvents. In addition, as-obtained graphene sheets are found to be functionalized with PIL molecules by the strong interaction of PIL and the graphene, as analyzed by various physical methods such as atomic force microscopy (AFM), X-ray photoelectric spectroscopy (XPS) and Raman spectroscopy. Such a strong interaction allows the successful production of graphene/PIL composites, in which their electrical properties are controllable by the loading level of graphene in the PIL matrix.

  • PDF

Breakup Characteristics of Liquid Sheets Formed by Impinging Jets in High Pressure Environments (고압분위기에서 충돌제트로 형성되는 액막의 분열특성)

  • Jung, Ki-Hoon;Khil, Tea-Ock;Lim, Byoung-Jik;Yoon, Young-Bin
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • Breakup characteristics of liquid sheets formed by the impingement of two water jets, such as a breakup length and a breakup wavelength of sheet, were investigated as increasing the injection velocity up to 30m/s and the ambient gas pressure up to 4.0MPa. While round edged orifices formed a laminar sheet which has no waves on the sheet when the injection velocity is low, sharp edged orifices formed a turbulent sheet which has impact waves irrespective of the injection velocity. Thus we compared the differences of breakup characteristics between them. The results showed that the aerodynamic force significantly affects the breakup of laminar sheet when the gas based Weber number is higher than unity, It was also found that the turbulent sheets have three breakup regimes, i.e. expansion regime, wave breakup regime and catastrophic breakup regime according to the gas based Weber number.

  • PDF

Breakup Characteristics of Impinging and Swirl Type Injectors

  • Yoon, Y.B.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.32-46
    • /
    • 2005
  • The breakup characteristics of liquid sheets formed by the impinging and swirl type injectors were studied as increasing the Weber number (or injection condition) and the ambient gas pressure to 4.0.MPa. In the case of impinging type injector. we compared the changes of breakup lengths between laminar and turbulent sheets. which are formed by the impingement of laminar and turbulent jets. respectively. The results showed that both sheets expand as increasing the injection velocity irrespective of the ambient gas density when the gas based Weber number is low. When the Weber number is high, however, the breakup of turbulent sheet depends on the hydraulic force of jets as well as the aerodynamic force of ambient gas which determines the breakup of laminar sheet. Using the experimental results. we could suggest empirical models on the breakup lengths of laminar and turbulent sheets. In the case of swirl type injector. as $We_l$, and ambient gas density increased, the disturbances on the annular liquid sheet surface were amplified by the increase of the aerodynamic forces. and thus the liquid sheet disintegrated near from the injector exit. Finally, the measured breakup length of swirl type injector according to the ambient gas density and $We_l$, was compared with the result by the linear instability theory. We found that the corrected breakup length relation derived from linear instability theory considering the attenuation of sheet thickness agrees well with our experimental results.

  • PDF

Design of Copper Sheets to Subcool Liquid Nitrogen in HTS Transformer (HTS변압기의 액체질소 과냉을 위한 구리판의 설계)

  • ;;Steven W. Van Sciver
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.291-294
    • /
    • 2003
  • In our newly proposed cryogenic systems for HTS transformer, liquid nitrogen is subcooled by copper sheets extended from coldhead of cryocooler. Since the shape of copper sheets has been given by the shape of HTS windings and electrical restriction, the thickness of copper sheets is the main parameter to determine operating temperature in HTS windings. Temperature distributions between windings and coldhead are investigated by heat transfer analysis, from which the thickness of copper sheets to maintain every part of windings below 66 K is calculated. The effects of the amount of AC loss on the temperature distributions in cooling system are also presented.

  • PDF

A numerical analysis and experimental study on the prediction of spray characteristics (분무특성 예측을 위한 이론적 접근과 실험적 연구)

  • Yoon, S.J.;Cho, D.J.
    • Journal of ILASS-Korea
    • /
    • v.3 no.2
    • /
    • pp.1-13
    • /
    • 1998
  • A theoretical and experimental study was carried out to predict the drop size distribution of the pressure swirl atomizer. Various analytical methods using the Kelvin-Helmholtz instability theory were tried to examine the wave growth on cylindrical liquid sheets. Cylinderical liquid sheets were extended to the case with the conical sheets. Perturbations due to tangential motion as well as longitudinal one were taken into account. And it was assumed that the breakup occurs when amplitude ratio exceeds exp(12), drop sizes were predicted only by theoretical approach. Drop size distribution was obtained by using maximum entropy formalism. Seven constraints in the form of the definition of mean diameter were used in this formulation in order to avoid the difficulties of estimating source terms. In this study $D_{10}$ only was introduced into the formulation as a constraint. The predicted drop size and drop size distribution agreed well with the measured data.

  • PDF

Breakup Characteristics of Laminar and Turbulent Liquid Sheets Formed by Impinging Jets in High Pressure Environments

  • Jung, K.;Khil, T.;Lim, B.;Yoon, Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.173-179
    • /
    • 2004
  • Breakup characteristics of liquid sheets formed by the impingement of two water jets, such as a breakup length and a breakup wavelength of sheet, were investigated as increasing the injection velocity up to 30m/s and the ambient gas pressure up to 4.0㎫. While round edged orifices formed a laminar sheet which has no waves on the sheet when the injection velocity is low, sharp edged orifices formed a turbulent sheet which has impact waves irrespective of the injection velocity. Thus we compared the differences of breakup characteristics between them. The results showed that the aerodynamic force significantly affects the breakup of laminar sheet when the gas based Weber number is higher than unity. It was also found that the turbulent sheets have three breakup regimes, i.e. expansion regime, wave breakup regime and catastrophic breakup regime according to the gas based Weber number.

  • PDF

The Effect of Grain Refinement by Ti Addition on Brazing Characteristic of 4343/3003/4343 Aluminum Clad Sheet (Ti 첨가에 의한 심재의 결정립미세화 처리가 4343/3003/4343 알루미늄 클래드 판재의 브레이징 특성에 미치는 영향)

  • Shin, Je-Sik;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.30 no.5
    • /
    • pp.187-195
    • /
    • 2010
  • In this study, in order to obtain a useful guide line for design and production of automotive heat exchanger components made of 4343/3003/4343 aluminum clad sheets, it was aimed to improve the understanding about the grain refinement effect on brazing characteristic of the clad sheets. Al-10Ti master alloy was used for grain refinement of 3003 core alloy, and the Ti inoculation level was systematically changed up to 0.1 wt%. The three-layer aluminum clad sheets were fabricated by hot roll bonding process. The effect of grain refinement on brazing characteristic of the clad sheets was investigated by evaluating wettability, bonding strength and sagging resistance.