• 제목/요약/키워드: Liquid phase Sintered Insert Metal

검색결과 3건 처리시간 0.015초

액상소결삽입재를 이용한 천이액상접합에 관한 연구 (Transient Liquid Phase Bonding with Liquid Phase Sintered Insert Metals)

  • 권영순;석명진;김지순;김환태;문진수
    • 한국분말재료학회지
    • /
    • 제8권4호
    • /
    • pp.258-267
    • /
    • 2001
  • In this work, the conventional transient liquid phase(TLP) bonding was modified. An attempt was made of using a liquid phase sintered alloy, which will be a liquid phase coexisting with a solid phase at the bonding temperature, as an interlayer for bonding metals. With an aim of revealing the fundamental features of this modified TLP bonding, the kinetics concerned with the growth of solid particles and the isothermal solidification process in Fe-1.16wt%B and Fe-4.5wt%P interlayers for the bonding pure iron, as well as the morphological change of the solid particle, were investigated.

  • PDF

Ni-Cr계 내열주강의 천이액상 접합 (Transient Liquid Phase Bonding of Ni-Cr Heat Resisted Cast Steel)

  • 권영순;신철균;김현식;김환태;김지순;석명진
    • 한국분말재료학회지
    • /
    • 제9권3호
    • /
    • pp.189-198
    • /
    • 2002
  • In this work, transient liquid phase (TLP) bonding of Ni-Cr heat resisted cast alloy (HP) was investigated. And also the behaviors of the solid particles distributed in the interlayer during TLP bonding were investigated. The MBF-60 and solid particles (Ni, Fe, and $Al_2O_3$ powders respectively) added MBF-60 which will be a liquid phase coexisting with solid particles at the bonding temperature were used as insert metal. The effective and sound bonding was possible by spark plasma sinter-bonding due to the differences of electric resistance between base metal and liquid insert layer which creates high temperature region. During the isothermal solidification, $Al_2O_3$ particles and solid particles of liquid phase sintered insert metal have shown no growth, while Ni and Fe particles grow rapidly. In this TLP bonding using the MBF-60 and distributed Fe, Ni particles as insert materials, the whole isothermal solidification process was dominated by the growth rate of the solid particles distributed in the interlayer.