• Title/Summary/Keyword: Liquid paraffin

Search Result 101, Processing Time 0.025 seconds

The Functions of Polyoxyethylene Tocopherylethers in the Formulations of Cosmetics (화장품 제형에서 폴리옥시에틸렌 토코페릴에테르의 기능)

  • 김영대;김창규
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.19 no.1
    • /
    • pp.108-126
    • /
    • 1993
  • The functions of polyoxyethylene tocopheryl ethers [POE(n)TEs] in emulsion, solubilization and gel were studied. For emulsification of liquid paraffin, POE(10)TE showed better emulsifying effect in O/W emulsions than others tested. The effects of oil and polyol content on the formulation of W/O and O/W emulsions were also studied. In O/W emulsion, the viscosity was increased by increasing the liquid paraffin content, at about 70%, and slightly increased by increasing the propylene glycol content, However, in W/O emulsion, the viscosity was decreased by increasing the oil content, and also decreased by increasing the propylene glycol content, For solubilization of perfume oil, POE(18)TE showed better solubilizing effect than the others tested. The gelling effect of POE(n)TEs increased with ethylene oxide chain length up to 50 moles. The gelling property was evaluated for hardness and viscosity.

  • PDF

Determination of Liquid Paraffins in Foods by Using GC-FID (GC-FID를 이용한 식품 중 유동파라핀 함량 분석)

  • Park, Se-Jong;Choi, Jae-Chun;Lim, Ho-Soo;Jang, Su-Jin;Kim, So-Hee;Kim, Meehye
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.545-549
    • /
    • 2013
  • Liquid paraffin is a mixture of heavier alkanes derived from petroleum. It can be used as a lubricant in processing machinery, as a coating agent, or as a releasing agent. The purpose of this study was to analyze liquid paraffins in foods by using a gas chromatography-flame ionized detector (GC-FID). Liquid paraffin was extracted from the food samples using n-hexane. Non-polar aromatic or olefinic co-extractives were removed by alkaline permanganate oxidation followed by clean up on an aluminium oxide SPE cartridge before the GC-FID analysis. The results of recovery tests were 91.5-103.2%. Based on this optimized method, we investigated the amount of liquid paraffin in various food samples purchased from domestic markets. The levels of liquid paraffin in bread were $95.5{\pm}156.0$ mg/kg (0.008%), those in capsules were $40.2{\pm}54.5$ mg/kg (0.001%), and those in dried fruits and vegetables were $3.0{\pm}18.1$ mg/kg (0.0001%). No liquid paraffin was detected in fresh fruits and vegetables. We propose that our method can be used to monitor and detect liquid paraffin in foods for food safety management.

Improvement in Water Resistance of Desulfurized Gypsum by Novel Modification of Silicone Oil Paraffin Composite Emulsion-based Waterproofing Agent

  • Cao, Jing-Yu;Li, Jin-Peng;Jiang, Ya-Mei;Wang, Su-Lei;Ding, Yi;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.558-565
    • /
    • 2019
  • In this study, dimethyl silicone oil and liquid paraffin were combined and subsequently emulsified; the resulting mixture was innovatively incorporated into desulfurized gypsum to resolve its drawback of a poor water resistance. The waterproof mechanism of the composite emulsion and liquid paraffin emulsion with mass fractions of 1%, 2%, 3%, and 4% were investigated. The effect of the desulfurized gypsum on the waterproof performance and basic mechanical properties were also investigated. The configuration of the composite waterproofing agent was characterized by FTIR and 1HNMR. The results showed that, compared with the traditional liquid paraffin emulsion-based waterproofing agent, the softening coefficient of the silicone oil paraffin composite emulsion-based water-repellent agent was increased by 60% and attained a value of 0.89. Combined with the waterproof mechanism and microscope morphology analysis of gypsum hydration products, the improvement in the water resistance of water resistance was primarily attributed to the formation of a silicone hydrophobic membrane between the crystals of the gypsum block; this ensured that water could not penetrate the crystal.

Heat Transfer Characteristics for Inward Melting in a Horizontal Cylinder (수평원통관 내에서 용융이 일어날 때의 열전달특성)

  • Yum, Sung-Bae;Hong, Chang-Shik
    • Solar Energy
    • /
    • v.10 no.2
    • /
    • pp.44-58
    • /
    • 1990
  • Heat transfer characteristics of heat storing processes in paraffin-filled horizontal circular cylinder is studied. The unmelted solid paraffin is allowed to fall on the bottom wall under gravity. In the upper liquid phase, natural convection is considered to take place while in the lower liquid film between the solid paraffin and the wall conduction is thought to take place instead. Experimental analyses are also carried out. The amount of the latent heat stored is obtained by recording the time wisely changing side area of the solid paraffin photographically. The mass of paraffin melted in the upper section is obtained by substracting the amount of melted mass in the lower section from the total mass melted and therefrom variation of heat transfer rate in each section is studied.

  • PDF

Formation of a paraffin slurry and its convective heat transfer in a circular pipe (파라핀 슬러리의 생성 및 관내 대류열전달에 관한 연구)

  • Choe, Eun-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.50-60
    • /
    • 1998
  • As a method to develop an enhanced heat transfer fluid, the fine particles of a phase-change material were mixed with a conventional heat transfer fluid. Paraffin, which can be obtained easily in domestic market, was used for the phase-change material and water was used as a carrier fluid. Fine liquid particles of paraffin were formed in water as an emulsion by using an emulsifier, and they were cooled rapidly to become solid particle, resulting in paraffin slurry. The average diameter of produced solid particles was inversely proportional to the amount of the added emulsifier, which was theoretically proved. The produced paraffin slurry was tested thermally in heat transfer test section having a constant-heat-flux boundary condition. The test section was made of a circular stainless-steel pipe, which was directly heated by the power supply having a maximum of 50 Volts-500 Amperes. DSC(Differential scanning calorimeter) tests showed that two kinds of phase change were involved in the melting of paraffin, and it was explained in two different ways. A five- region-melting model was developed by extending the conventional three-region-melting model, and was used to obtain the local bulk mean temperatures of paraffin slurry in the heating test section. The local heat transfer coefficient showed a maximum where the bulk mean temperature of the paraffin slurry reached at the melting temperature of paraffin.

A study of heat transfer with Phase Change Material in heat storage system - Inward freezing in the vertical cylinder - (상변화물질을 이용한 축열조에서 열전달현상에 관한 연구 - 수직원통관 내에서 응고 열전달 -)

  • Lee, C.M.;Yim, C.S.;Iqbal, M.
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.53-64
    • /
    • 1993
  • This study investigated heat transfer phenomena during the freezing of an initially superheated or non-superheated liquid in a cooled cylinder tube. Numerical and experimental method were performed to obtatin the temperature and velocity distribution, the shape of interface. Natural convection effects in the superheated liquid were confined and moderated a short freezing time. After natural convection ceases, heat conduction dominated in the whole paraffin, so Crystal and much-zone were found out in PCM. Initial superheating of liquid tended to morderatly diminish the frozen layer thickness at short freezing times but little effect on the these quantities at longer times. On the amount of frozen mass, Iintial liquid superheating is less affected than tube wall subcooling.

  • PDF

Study on the cooling performance of discrete heat sources using coolants (냉각제들에 따른 불연속 발열체의 냉각성능 연구)

  • 최민구;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.224-235
    • /
    • 1999
  • The present study investigated the effects of the experimental parameters on the cooling characteristics of the multichip module cooled by the indirect liquid cooling method using water, PF-5060, and paraffin slurry. The experimental parameters were coolants including Paraffin slurry with mass fraction of 2.5~7.5%, heat flux of 10~40W/$\textrm{cm}^2$ for the simulated VLSI chips and Reynolds numbers of 3,000~20,000. The size of paraffin slurry was constant as 10~40${\mu}{\textrm}{m}$ before and after the experiment. The chip surface temperatures for paraffin slurry were lower than those for water and PF-5060. The local heat transfer coefficients for the paraffin slurry were larger than those for water and the local heat transfer coefficients reached a row-number-independent and thermally-fully-developed value approximately after the third row. The local Nusselt numbers for paraffin slurry with a mass fraction of 7.5% were larger by 20~38% than those for water. The paraffin slurry with a mass fraction of 5% shelved the best thermal and hydrodynamic characteristics when local heat transfer and pressure drop were considered simultaneously.

  • PDF

Recovery of IGF-I Using Liquid Emulsion Membranes (액막법을 이용한 IGF-I 회수)

  • 최광수;문용일
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.1
    • /
    • pp.89-94
    • /
    • 1998
  • A study was made to investigate the effects of concerning factors with IGF-I recovery on the final IGF-I concentration in the effluent and to establish recovery conditions of IGF-I using liquid emulsion membranes(LEM). D2EHPA was best carrier among Amberlite LA2, Aliquit 336 and D2EHPA for recovery rate of IGF-I. Recovery rate of IGF-I by D2EHPA volume in the oil phase was increased as increasing D2EHPA volume, and optimal volume of D2EHPA was 5% in this experiment. The recovery rate of IGF-I by D2EHPA was increased by the decreasing from pH 7 to pH 4 of external phase. Therefore, optimal pH value was 4.0. Optimal concentrations of sulfuric acid in internal phase, paraffin oil in oil phase and Span 80 for recovery rate of IGF-I were 0.1M, 2.0% and 5%, respectively, and optimal W/O rate was 2. These results suggested that optimal conditions for recovery of IGF-I were D2EHPA(5%) as carrier, pH 4.0, 0.1M sulfuric acid, 2% paraffin oil, 2.0 W/O rate and 5.0% Span 80.

  • PDF

Tribological Characteristics of Paraffin Liquid Oil with Nanodiamond and Effects of Surface Hardness on Wear Properties (나노다이아몬드를 첨가한 오일의 트라이볼로지 특성 및 이에 미치는 표면 경도의 영향)

  • Lee, Gyu-Sun;Kim, Hyun-Soo;Lee, Jeong-Hoon;Park, Tae-Hee;Lee, Jung-Suk;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.321-325
    • /
    • 2011
  • Nanodiamond was dispersed in paraffin liquid oil to investigate the effects of nanodiamond at the marginally lubricated condition. Scuffing test and immediate loading sliding wear test were conducted using the fabricated nanodiamond oil. As a result, dispersion of nanodiamond in oil leads to increase in scuffing life, and nanodiamond contents affects the scuffing life. In case of immediate loading sliding wear test, the result was different according to hardness of specimen. If hardness of specimen was low, abrasion of nanodiamond occurred actively. If hardness of specimen was increased, however, nanodiamond can act as a spacer or rolling between contacting surfaces.

Effective thermal conductivity of the phase change material with metal scrap (금속스크랩이 혼합된 상변화물질의 유효열전도율)

  • 김시범;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.923-928
    • /
    • 1986
  • A set of measurements has been made for the thermal conductivity of the pure paraffin in liquid and solid phases and for the effective thermal conductivity of the paraffin with metal scrap with the aid of the heat flux meter. Ther thermopile-type heat flux meter has been designed by steady state method and the functional relation between the temperature difference of both sides and heat flux has been obtained. The measured values of thermal conductivity are compared with the existing data for the pure paraffin and with the predicated values from the suggested model in which only one empirical constant is contained. The comparison within ten percent of the volume fraction of the metal scrap in the paraffin is satisfactory.