• Title/Summary/Keyword: Liquid nitrogen storage

Search Result 113, Processing Time 0.023 seconds

A simple mid-term preservation method (SMPM) of plant callus under low temperature conditions (저온 보존을 이용한 간편 중기 식물캘러스 저장법)

  • Park, Sung-Chul;Park, Su Hyun;Kim, Soyoung;Jeong, Yu Jeong;Kim, Cha Young;Jeong, Jae Cheol
    • Journal of Plant Biotechnology
    • /
    • v.49 no.3
    • /
    • pp.187-192
    • /
    • 2022
  • The repeated monthly or weekly subculture of plant callus is labor intensive and increases the risk of somaclonal variation from the parental callus line. The most effective method for preserving plant callus is cryopreservation, which involves storage in liquid nitrogen. However, this method cannot be applied to the callus of different plant species in the same manner, so it is difficult to develop a standardized cryopreservation method. In addition, the survival rate of the frozen callus after thawing and the regeneration rate after survival are uncertain. Therefore, it is necessary to develop a method to extend the subculture interval of plant callus in an active state. In this study, active plant calli of various species without freezing was incubated at 15℃ for 4 to 12 weeks without subculture. After 12 weeks, 8 lines of plant callus grew less than 2-fold when cultured at 25℃, but at least 2 times as much when cultured at 15℃. Moreover, total antioxidant activity did not differ significantly between plant callus recovered at 25℃ after culturing at 15℃ or at 25℃. These results show that the subculture interval can be extended at a temperature of 15℃ without need for modified medium composition or additional processes. In addition, positive results in all calli of several plant species are expected to reduce labor as well as somaclonal variation by increasing the subculture.

A study on the air pollutant emission trends in Gwangju (광주시 대기오염물질 배출량 변화추이에 관한 연구)

  • Seo, Gwang-Yeob;Shin, Dae-Yewn
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.4
    • /
    • pp.1-26
    • /
    • 2009
  • We conclude the following with air pollution data measured from city measurement net administered and managed in Gwangju for the last 7 years from January in 2001 to December in 2007. In addition, some major statistics governed by Gwangju city and data administered by Gwangju as national official statistics obtained by estimating the amount of national air pollutant emission from National Institute of Environmental Research were used. The results are as follows ; 1. The distribution by main managements of air emission factory is the following ; Gwangju City Hall(67.8%) > Gwangsan District Office(13.6%) > Buk District Office(9.8%) > Seo District Office(5.5%) > Nam District Office(3.0%) > Dong District Office(0.3%) and the distribution by districts of air emission factory ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%). That by types(Year 2004~2007 average) is also following ; Type 5(45.2%) > Type 4(40.7%) > Type 3(8.6%) > Type 2(3.2%) > Type 1(2.2%) and the most of them are small size of factory, Type 4 and 5. 2. The distribution by districts of the number of car registrations is the following ; Buk District(32.8%) > Gwangsan District(22.4%) > Seo District(21.8%) > Nam District(14.9%) > Dong District(8.1%) and the distribution by use of car fuel in 2001 ; Gasoline(56.3%) > Diesel(30.3%) > LPG(13.4%) > etc.(0.2%). In 2007, there was no ranking change ; Gasoline(47.8%) > Diesel(35.6%) > LPG(16.2%) >etc.(0.4%). The number of gasoline cars increased slightly, but that of diesel and LPG cars increased remarkably. 3. The distribution by items of the amount of air pollutant emission in Gwangju is the following; CO(36.7%) > NOx(32.7%) > VOC(26.7%) > SOx(2.3%) > PM-10(1.5%). The amount of CO and NOx, which are generally generated from cars, is very large percentage among them. 4. The distribution by mean of air pollutant emission(SOx, NOx, CO, VOC, PM-10) of each county for 5 years(2001~2005) is the following ; Buk District(31.0%) > Gwangsan District(28.2%) > Seo District(20.4%) > Nam District(12.5%) > Dong District(7.9%). The amount of air pollutant emission in Buk District, which has the most population, car registrations, and air pollutant emission businesses, was the highest. On the other hand, that of air pollutant emission in Dong District, which has the least population, car registrations, and air pollutant emission businesses, was the least. 5. The average rates of SOx for 5 years(2001~2005) in Gwangju is the following ; Non industrial combustion(59.5%) > Combustion in manufacturing industry(20.4%) > Road transportation(11.4%) > Non-road transportation(3.8%) > Waste disposal(3.7%) > Production process(1.1%). And the distribution of average amount of SOx emission of each county is shown as Gwangsan District(33.3%) > Buk District(28.0%) > Seo District(19.3%) > Nam District(10.2%) > Dong District(9.1%). 6. The distribution of the amount of NOx emission in Gwangju is shown as Road transportation(59.1%) > Non-road transportation(18.9%) > Non industrial combustion(13.3%) > Combustion in manufacturing industry(6.9%) > Waste disposal(1.6%) > Production process(0.1%). And the distribution of the amount of NOx emission from each county is the following ; Buk District(30.7%) > Gwangsan District(28.8%) > Seo District(20.5%) > Nam District(12.2%) > Dong District(7.8%). 7. The distribution of the amount of carbon monoxide emission in Gwangju is shown as Road transportation(82.0%) > Non industrial combustion(10.6%) > Non-road transportation(5.4%) > Combustion in manufacturing industry(1.7%) > Waste disposal(0.3%). And the distribution of the amount of carbon monoxide emission from each county is the following ; Buk District(33.0%) > Seo District(22.3%) > Gwangsan District(21.3%) > Nam District(14.3%) > Dong District(9.1%). 8. The distribution of the amount of Volatile Organic Compound emission in Gwangju is shown as Solvent utilization(69.5%) > Road transportation(19.8%) > Energy storage & transport(4.4%) > Non-road transportation(2.8%) > Waste disposal(2.4%) > Non industrial combustion(0.5%) > Production process(0.4%) > Combustion in manufacturing industry(0.3%). And the distribution of the amount of Volatile Organic Compound emission from each county is the following ; Gwangsan District(36.8%) > Buk District(28.7%) > Seo District(17.8%) > Nam District(10.4%) > Dong District(6.3%). 9. The distribution of the amount of minute dust emission in Gwangju is shown as Road transportation(76.7%) > Non-road transportation(16.3%) > Non industrial combustion(6.1%) > Combustion in manufacturing industry(0.7%) > Waste disposal(0.2%) > Production process(0.1%). And the distribution of the amount of minute dust emission from each county is the following ; Buk District(32.8%) > Gwangsan District(26.0%) > Seo District(19.5%) > Nam District(13.2%) > Dong District(8.5%). 10. According to the major source of emission of each items, that of oxides of sulfur is Non industrial combustion, heating of residence, business and agriculture and stockbreeding. And that of NOx, carbon monoxide, minute dust is Road transportation, emission of cars and two-wheeled vehicles. Also, that of VOC is Solvent utilization emission facilities due to Solvent utilization. 11. The concentration of sulfurous acid gas has been 0.004ppm since 2001 and there has not been no concentration change year by year. It is considered that the use of sulfurous acid gas is now reaching to the stabilization stage. This is found by the facts that the use of fuel is steadily changing from solid or liquid fuel to low sulfur liquid fuel containing very little amount of sulfur element or gas, so that nearly no change in concentration has been shown regularly. 12. Concerning changes of the concentration of throughout time, the concentration of NO has been shown relatively higher than that of $NO_2$ between 6AM~1PM and the concentration of $NO_2$ higher during the other time. The concentration of NOx(NO, $NO_2$) has been relatively high during weekday evenings. This result shows that there is correlation between the concentration of NOx and car traffics as we can see the Road transportation which accounts for 59.1% among the amount of NOx emission. 13. 49.1~61.2% of PM-10 shows PM-2.5 concerning the relationship between PM-10 and PM-2.5 and PM-2.5 among dust accounts for 45.4%~44.5% of PM-10 during March and April which is the lowest rates. This proves that particles of yellow sand that are bigger than the size $2.5\;{\mu}m$ are sent more than those that are smaller from China. This result shows that particles smaller than $2.5\;{\mu}m$ among dust exist much during July~August and December~January and 76.7% of minute dust is proved to be road transportation in Gwangju.

Studies on Genetics and Breeding in Rainbow Trout(Oncorhynchus mykiss) VII. Fertilization of Fresh Egg with Co-Preserved Sperm and Ultrastructural Changes (무지개 송어의 유전 육종학적 연구 VII. 동결보존시킨 정자와 신선한 난모세포의 수정 및 미세구조적 변화)

  • PARK Hong-Yang;YOON Jong-Man
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.2
    • /
    • pp.79-92
    • /
    • 1992
  • This study was carried out to develop new techniques useful for cryopreservation, thawing and artificial insemination, and ultrastructural changes of cryopreserved spermatozoa in rainbow trout(Oncorhynchus mykiss) . Two extenders, such as Tyrode solution and Whittingham's $T_6$ solution, were used to preserve rainbow trout sperm in refrigerator $(-20,\;-40\;and\;-70^{\circ}C)$ or liquid nitrogen $%(-196^{\circ})$. Hand-stripped semen was diluted to 1:16 with two extenders, an then the semen were frozen after mixing semen and each extender containing 1M or 1.5M DMSO solution to 1:1. After 60 days cryopreserved semen was thawed in a $13^{\circ}$ water bath, and subsequently centrifugated. After centrifugation at 1,000 rpm for 5 min thawed semen was washed with extenders, and then fertilized with fresh eggs. The results obtained in these experiments were summarized as follows: After cryopreservation, over 75% of spermatozoa were appeared motile and the survival rate was high. Following cryopreservation by the addition of cryoprotectant such as DMSO, methanol and glycerol, the fertilization rate of the thawed spermatozoa appeared over $99\%$ compared with the control having $99\%$ of fertilization rate. There was no difference between the control and experimental groups such as $(-20^{\circ}C\;-40^{\circ}C\;and\;-70^{\circ}C)$ and $-196^{\circ}$ in fertilization rate. Following cryopreservation at $-196^{\circ}$ by the addition of 1M DMSO of cryoprotectant, each fertilization rate following 24 hours and hatching rate following 24 days showed $96\%$ and $8\%$ by the addition of BSA, but showed $98\%\;and\;10%$ by no addition of BSA. Following 2 months of cryopreservation by the addition of 1M DMSO of cryoprotectant, there were $10%$ of hatching rate at $-196^{\circ}\;and\;10\%\;and\;35\%,\;respectively,\;at\;-40^{\circ}C\;and\;-70^{\circ}C$. Following 2 months of cryopreservation by the addition of 1M methanol of cryoprotectant, there were $22\%$ of fertilization rate at $-20^{\circ}C,\;and\;28\%,\;at\;-70^{\circ}C$ Following 2 months of cryopreservation by the addition of 1M glycerol of cryoprotectant, there were $22\%$ of fertilization rate at $-20^{\circ}C$, and $33\%,\;at\;-70^{\circ}C$. pollowing 2 months of cryopreservation by the addition of 1.5M DMSO of cryoprotectant, there were $27\%$ of fertilization rate at $-20^{\circ}C,\;an\;36\%\;and \;35\%,\;respectively,\;at\;-40^{\circ}C\;and\;-70^{\circ}C$. Following 2 months of cryopreservation by the addition of 1.5M glycerol of cryoprotectant, there were $34\% \;of\;fertilization\;rate\;at\;-20^{\circ}C, \;and\;31\%\;and\;31\%,\;respectively,\;at \;-40^{\circ}C\;and\;-70^{\circ}$. Following 2 months of cryopreservation by the addition of 1.5M methanol of cryoprotectant, there were $28\%$ of fertilization rate at $-20^{\circ}C,\;and\;29\%\;and\;28\%,\;respectively,\;at\;-40^{\circ}C\;and\;-70^{\circ}C.$ From 10 days and 15 days following fertilization at $13^{\circ}C\;and\;10^{\circ}C$, respectively, the mortality rate of fertilized ova was markedly increased. The middle piece of spermatozoa had two set of central doublets, nine set of outer coarse fibres, and mitochondrial sheath. Spermatozoa went through morphological changes during storage, e.g. winding of flagella, detachment of the nuclear envelope and the plasma membrane from the nucleus of the sperm head. There were $1\%$ abnormal spermatozoa in fresh sperm and about $15\%$ during storage.

  • PDF