• Title/Summary/Keyword: Liquid metal embrittlement

Search Result 4, Processing Time 0.046 seconds

Effect of Ni-Flash Coating on Hydrogen Embrittlement and Liquid Metal Embrittlement of Ultra-High-Strength Electrogalvanized Steel Sheet (Ni-Flash 코팅이 초고강도 전기아연 도금강재의 수소취화 및 액상금속취화에 미치는 영향)

  • Seon Ho Oh;Jin Sung Park;Sung Jin Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.302-309
    • /
    • 2024
  • The purpose of this study was to elucidate effects of a thin (tens to hundreds of nanometers) Ni-flash coating layer on hydrogen embrittlement (HE) and liquid metal embrittlement (LME) in ultra-high-strength electrogalvanized steel with a tensile strength of more than 1 GPa. Various experimental and analytical methods, including thermal desorption spectroscopy, slow strain rate testing, resistance spot welding, X-ray diffraction, and metallographic observation, were employed. Results showed that an increase in Ni target amount for flash coating resulted in a decrease in diffusible hydrogen content during electrogalvanizing, resulting in a significant decrease in HE sensitivity. Moreover, a Ni target amount of more than 1000 mg/m2 drastically reduced the occurring frequency and average depth of LME. This reduction could be primarily attributed to formation of Zn-Ni intermetallic phases during the welding process that could inhibit liquefaction of intermetallic phases in the heat-affected zone. This study provides a desirable Ni target amount for Ni-flash coating on ultra-high-strength steels conducted in a continuous galvanizing line or a high-speed batch line to achieve high resistance to both HE and LME.

Metallurgical Failure Analysis on a Suspension Clamp in 154kV Electric Power Transmission Tower

  • Lee, Jaehong;Jung, Nam-gun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.237-240
    • /
    • 2021
  • Failure of a suspension clamp made of hot dip galvanized cast iron in 154kV transmission tower was investigated. Metallurgical analysis of a crack of the clamp was performed using a digital microscope, an optical microscope, and a scanning electron microscope. It was revealed that the crack surface was covered by continuous zinc layer. Distinctive casting skin was found underneath both the outer surface and crack surface. The result showed that pre-existing crack had been formed in the fabrication, and liquid metal embrittlement during hot dip galvanization may assist crack propagation.

A novel monitoring system for fatigue crack length of compact tensile specimen in liquid lead-bismuth eutectic

  • Baoquan Xue;Jibo Tan;Xinqiang Wu;Ziyu Zhang;Xiang Wang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1887-1894
    • /
    • 2024
  • Fatigue strength of the structural materials of lead-cooled fast reactors (LFRs) and accelerator-driven systems (ADS) may be degraded in liquid metal (Lead or lead-bismuth eutectic (LBE)) environments. The fatigue crack growth (FCG) data of structural materials in liquid LBE are necessary for damage tolerance design, safety assessment and life management of key equipment. A novel monitoring system for fatigue crack length was designed on the compliance method and the monitor technology of crack opening displacement (COD) of CT specimens by the linear variable differential transformers (LVDT) system. It can be used to predict the crack length by monitoring the COD of CT specimens in harsh high-temperature liquid LBE using a LVDT system. The prediction accuracy of this system was verified by FCG experiments in room temperature air and liquid LBE at 150, 250 and 350 ℃. The first results obtained in the FCG test for T91 steel in liquid LBE at 350 ℃ are presented.