• Title/Summary/Keyword: Liquid membrane

Search Result 624, Processing Time 0.023 seconds

Study for Residue Analysis of Herbicide, Clopyralid in Foods (식품 중 제초제 클로피랄리드(Clopyralid)의 잔류 분석법)

  • Kim, Ji-young;Choi, Yoon Ju;Kim, Jong Su;Kim, Do Hoon;Do, Jung Ah;Jung, Yong Hyun;Lee, Kang Bong;Kim, Hyo Chin
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.283-290
    • /
    • 2018
  • BACKGROUND: Pesticide residue analysis is an essential activity in order to establish the food safety of agricultural products. Analytical approaches to the food safety are required to meet internationally the guideline of Codex (Codex Alimentarius Commission, CAC/GL 40). In this study, we developed a liquid chromatograph-tandem mass spectrometer (LC-MS/MS) method to determine the herbicide clopyralid in food matrixes. METHODS AND RESULTS: Clopyralid was extracted with aqueous acetonitrile containing formic acid and the extracts were mixed in a citrate buffer consisted of magnesium sulfate anhydrous, NaCl, sodium citrate dihydrate and disodium hydrogencitrate sesquihydrate followed by centrifugation. The supernatants were filtered through a nylon membrane filter and used for the analysis of clopyralid. The method was validated by accuracy and precision experiments on the samples fortified at 3 different levels of clopyralid. LC-MS/MS in positive mode was employed to quantitatively determine clopyralid in the food samples. Matrix-matched calibration curves were inearranged from 0.001 to 0.25 mg/kg with r2 > 0.994. The limits of detection and quantification were determined to be 0.001 and 0.01 mg/kg, respectively. There covery values of clopyralid for tified at 0.01 mg/kg in the control samples ranged from approximately 82 to 106% with relative standard deviations below 2 0%. CONCLUSION: The method developed in this study meets successfully the Codex guideline for pesticide residue analysis in food samples. This, the method could be applicable to determine pesticides in foods produced domestically and internationally.

Protective effect of Gabjubaekmok (Diospyros kaki) extract against amyloid beta (Aβ)-induced cognitive impairment in a mouse model (아밀로이드 베타(amyloid beta)로 유도된 인지장애 마우스 모델에서 갑주백목(Diospyros kaki) 추출물의 인지기능 및 뇌 신경세포 보호 효과)

  • Yoo, Seul Ki;Kim, Jong Min;Park, Seon Kyeong;Kang, Jin Yong;Han, Hye Ju;Park, Hyo Won;Kim, Chul-Woo;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.379-392
    • /
    • 2019
  • The current study investigated the effect of Gabjubaekmok (Diospyros kaki) ethanolic extract (GEE) on $H_2O_2$-induced human neuroblastoma MC-IXC cells and amyloid beta $(A{\beta})_{1-42}$-induced ICR (Institute of Cancer Research) mice. GEE showed significant antioxidant activity that was evaluated based on ABTS, DPPH scavenging activity, and inhibition of malondialdehyde (MDA) and acetylcholinesterase activity. Further, GEE inhibited ROS production and increased cell viability in $H_2O_2$-induced MC-IXC cells. Administration of GEE ameliorated the cognitive dysfunction on $A{\beta}$-induced ICR mice as evaluated using Y-maze, passive avoidance, and Morris water maze tests. Results of ex vivo test using brain tissues showed that, GEE protected the cholinergic system and mitochondrial functions by increasing the levels of antioxidants such as ROS, mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) against $A{\beta}$-induced cognitive dysfunction. Moreover, GEE decreasd the expression levels of apoptosis-related proteins such as $TNF-{\alpha}$, p-JNK, p-tau, BAX and caspase 3. While, expression levels of p-Akt and $p-GSK3{\beta}$ increased than $A{\beta}$ group. Finally, gallic acid was identified as the main compound of GEE using high performance liquid chromatography.

The Effect of Seminal Plasma on Chilling and Freezing of Canine Spermatozoa (개 정액의 정장이 개정자의 냉각과 동결에 미치는 영향)

  • You, Myung-Jo;Lee, John-Hwa;Kim, In-Shik;Park, Jin-Ho;Kwon, Jung-Kee;Kim, Jong-Hoon;Kim, Bum-Seok;Yu, Il-Jeoung
    • Journal of Veterinary Clinics
    • /
    • v.24 no.4
    • /
    • pp.486-492
    • /
    • 2007
  • Seminal plasma(SP) is usually removed from semen that is to be cryopreserved. However, some reports indicate that SP has beneficial effects on spermatozoa during chilling and freezing. The purpose of this study was to determine the effect of SP on sperm survival by adding SP to the extender before cooling and freezing canine spermatozoa. In replicate experiments, ejaculates obtained from four healthy dogs(1-4 years old) of various breeds were pooled, centrifuged at $300{\times}g$ for 10 min at $25^{\circ}C$, and the supernatant of seminal plasma was decanted. Spermatozoa were suspended in egg yolk-Tris(EYT) buffer. The study comprised two experiments: [Exp 1] Sperm were suspended in EYT extender containing either 0, 20, 40, 80 or 100% SP and were slowly cooled to $4^{\circ}C$ for 2h or held at $25^{\circ}C$ as controls. Sperm concentration was adjusted to $2{\times}10^8/ml$. [Exp II] Sperm samples, each of which contained $1{\times}10^8/ml$, were assigned to nine groups to be frozen. In the first four groups, sperm in EYT containing either 20, 40, 80 or 100% SP were cooled to $4^{\circ}C$, then diluted to contain final concentrations of EYT+0.6M glycerol and then were frozen. The final concentrations of SP were 10, 20, 40 or 50%. In the other four groups, sperm in EYT alone were first cooled slowly to $4^{\circ}C$, then diluted to contain final concentrations of EYT+0.6M glycerol plus 10, 20, 40 or 50% SP and then were frozen. Spermatozoa, which chilled in EYT alone and diluted to contain final concentrations of EYT+0.6M glycerol without seminal plasma, and then frozen, was regarded as control. Spermatozoa were frozen at $25^{\circ}C/min$ of cooling rate in plastic straws that were suspended above liquid nitrogen and thawed in water at $38^{\circ}C$ for 1 min. Sperm survival was assayed by determining progressive motility and integrity of plasma and acrosome membranes. Progressive motility was determined by microscopic examination at $200{\times}$ magnification. Membrane integrity was assessed by use of a double fluorescent dye, and acrosome integrity by staining sperm with Pisum sativum agglutinin. The results of the first experiment showed that adding SP did not improve motility of spermatozoa compared to those incubated without SP regardless of temperature. The results of the second experiment showed that spermatozoa suspended in EYT+0.6M glycerol containing SP exhibited the higher progressive motility before being frozen(P<0.05). However, frozen-thawed spermatozoa that had suspended in EYT+0.6M glycerol containing SP showed the similar or lower viability(P<0.05). In summary, although seminal plasma did not affect spermatozoa that were chilled in EYT without cryoprotectant(CPA), addition of seminal plasma to EYT containing CPA did significantly improved progressive motility of canine spermatozoa that were chilled.

Studies on Genetics and Breeding in Rainbow Trout(Oncorhynchus mykiss) VII. Fertilization of Fresh Egg with Co-Preserved Sperm and Ultrastructural Changes (무지개 송어의 유전 육종학적 연구 VII. 동결보존시킨 정자와 신선한 난모세포의 수정 및 미세구조적 변화)

  • PARK Hong-Yang;YOON Jong-Man
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.2
    • /
    • pp.79-92
    • /
    • 1992
  • This study was carried out to develop new techniques useful for cryopreservation, thawing and artificial insemination, and ultrastructural changes of cryopreserved spermatozoa in rainbow trout(Oncorhynchus mykiss) . Two extenders, such as Tyrode solution and Whittingham's $T_6$ solution, were used to preserve rainbow trout sperm in refrigerator $(-20,\;-40\;and\;-70^{\circ}C)$ or liquid nitrogen $%(-196^{\circ})$. Hand-stripped semen was diluted to 1:16 with two extenders, an then the semen were frozen after mixing semen and each extender containing 1M or 1.5M DMSO solution to 1:1. After 60 days cryopreserved semen was thawed in a $13^{\circ}$ water bath, and subsequently centrifugated. After centrifugation at 1,000 rpm for 5 min thawed semen was washed with extenders, and then fertilized with fresh eggs. The results obtained in these experiments were summarized as follows: After cryopreservation, over 75% of spermatozoa were appeared motile and the survival rate was high. Following cryopreservation by the addition of cryoprotectant such as DMSO, methanol and glycerol, the fertilization rate of the thawed spermatozoa appeared over $99\%$ compared with the control having $99\%$ of fertilization rate. There was no difference between the control and experimental groups such as $(-20^{\circ}C\;-40^{\circ}C\;and\;-70^{\circ}C)$ and $-196^{\circ}$ in fertilization rate. Following cryopreservation at $-196^{\circ}$ by the addition of 1M DMSO of cryoprotectant, each fertilization rate following 24 hours and hatching rate following 24 days showed $96\%$ and $8\%$ by the addition of BSA, but showed $98\%\;and\;10%$ by no addition of BSA. Following 2 months of cryopreservation by the addition of 1M DMSO of cryoprotectant, there were $10%$ of hatching rate at $-196^{\circ}\;and\;10\%\;and\;35\%,\;respectively,\;at\;-40^{\circ}C\;and\;-70^{\circ}C$. Following 2 months of cryopreservation by the addition of 1M methanol of cryoprotectant, there were $22\%$ of fertilization rate at $-20^{\circ}C,\;and\;28\%,\;at\;-70^{\circ}C$ Following 2 months of cryopreservation by the addition of 1M glycerol of cryoprotectant, there were $22\%$ of fertilization rate at $-20^{\circ}C$, and $33\%,\;at\;-70^{\circ}C$. pollowing 2 months of cryopreservation by the addition of 1.5M DMSO of cryoprotectant, there were $27\%$ of fertilization rate at $-20^{\circ}C,\;an\;36\%\;and \;35\%,\;respectively,\;at\;-40^{\circ}C\;and\;-70^{\circ}C$. Following 2 months of cryopreservation by the addition of 1.5M glycerol of cryoprotectant, there were $34\% \;of\;fertilization\;rate\;at\;-20^{\circ}C, \;and\;31\%\;and\;31\%,\;respectively,\;at \;-40^{\circ}C\;and\;-70^{\circ}$. Following 2 months of cryopreservation by the addition of 1.5M methanol of cryoprotectant, there were $28\%$ of fertilization rate at $-20^{\circ}C,\;and\;29\%\;and\;28\%,\;respectively,\;at\;-40^{\circ}C\;and\;-70^{\circ}C.$ From 10 days and 15 days following fertilization at $13^{\circ}C\;and\;10^{\circ}C$, respectively, the mortality rate of fertilized ova was markedly increased. The middle piece of spermatozoa had two set of central doublets, nine set of outer coarse fibres, and mitochondrial sheath. Spermatozoa went through morphological changes during storage, e.g. winding of flagella, detachment of the nuclear envelope and the plasma membrane from the nucleus of the sperm head. There were $1\%$ abnormal spermatozoa in fresh sperm and about $15\%$ during storage.

  • PDF