• 제목/요약/키워드: Liquid infiltration

검색결과 101건 처리시간 0.02초

반응결합 소결에 의한 SiC-TiC계 복합재료 제조 (Manufacture of SiC-TiC System Composite by the Reaction-Bonded Sintering)

  • 한인섭;김홍수;우상국;양준환;정윤중
    • 한국세라믹학회지
    • /
    • 제31권8호
    • /
    • pp.849-860
    • /
    • 1994
  • The microstructural evolution and crystalline phases of this infiltration of Ti+Al liquids in TiC, SiC, TiC+C, and SiC+C preforms have been investigated. As the Ti and Al mixing ratio in Ti+Al infiltrated liquid changes, the newly formed reaction products, which were reacted from the Ti+Al liquid with preforms, consisted of three major phases as Ti3AlC, Al2Ti4C2 or Al4C3. The TiC grain shape was changed to spheroid, when Ti3AlC was formed. In case of Al2Ti4C2 formation, the platelet grain was formed from the original TiC grain. When Al4C3 was formed, nodular or intergranular fine-grained Al4C3 was formed around the TiC grain, while the original TiC grain shape was not changed.

  • PDF

액상형 규산질계 침투성 방수재의 성능평가에 관한 연구 (A Study on a Performance evaluation for Quality Liguid Siliceous of waterproof agent)

  • 강효진;권시원;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.63-67
    • /
    • 2003
  • There are many factors that generate the early deterioration of the concrete structure. As the one of the representative factors, we can think an invasion of the water, air and so on. The water and air invade in inside void along the capillarity and they become the cause that the durability like corrosion of layer department due to freezing and thawing, inside steel frame corrosion, and so on blacks. Therefore with covering permeability covering waterproofing material of fluid condition in outer wall, intercepting the deterioration factor due to the infiltration of water from outside and for salt damage of concrete layer department, freezing damage and neutralization, it needs to improve durability of structure. This study separately examined physical and chemical specific of quality liquid siliceous of waterproofing material. Therefore as this applys the construction site, it improves the durability of concrete structure. Further this presents the application plan from the construction market against the new material.

  • PDF

TiB2코팅이 함침법으로 제조되는 B4C/Al 복합체의 기계적 특성에 미치는 영향 (Effect of TiB2 Coating on the Mechanical Properties of B4C/Al Composites Prepared by Infiltration Process)

  • 김선혜;임경란;심광보;김창삼
    • 한국세라믹학회지
    • /
    • 제40권8호
    • /
    • pp.777-783
    • /
    • 2003
  • B$_4$C/Al 복합체의 기계적 물성은 제조 과정에서 B$_4$C와 Al의 반응에 의한 반응생성물의 종류와 양에 의해서 결정되므로, 강하고 경량 소재로서의 특성이 요구되는 복합체를 만들려면 반응생성물을 조절할 필요가 있다. TiB$_2$는 알루미늄과 반응성이 거의 없고 B$_4$C보다 낮은 접촉각(100$0^{\circ}C$에서 85$^{\circ}$)을 가지고 있다. 그러므로 B$_4$C를 TiB$_2$로 코팅하면 B$_4$C/Al복합체를 함침법으로 제조하는 경우 알루미늄의 함침 온도를 낮출 수 있다. 본 연구에서는 TiB$_2$가 B$_4$C/Al 복합체의 미세구조와 기계적 특성에 미치는 영향을 조사하였다. TiB$_2$를 코팅한 B$_4$C 분말을 졸겔법을 이용하여 준비하였다. B$_4$C 입자에 코팅된 TiB$_2$ 입자 크기는 20-50 nm이었다. TiB$_2$를 코팅하고 제작한 B$_4$C/Al 복합체에는 l7wt%의 미반응 알루미늄이 남아있었고, 코팅하지 않고 제작한 것에는 l4 wt%가 남았다. 결과적으로 코팅하고 제작한 복합체는 코팅하지 않고 제작한 것보다 파괴인성은 높고 경도는 낮았으며, 이러한 결과에서 TiB$_2$가 알루미늄의 함침 온도를 낮추고 B$_4$C와 Al이 반응하는 것을 억제하고 있다는 것을 알 수 있었다.

액상침투법을 이용한 $Al_2O_3/TZP$ 복합체의 제조 및 특성 (Preparation and Characteristics of $Al_2O_3/TZP$ Composites Using Liquid Infiltration Technique)

  • 양태영;이윤복;김영우;오기동;박홍채
    • 한국재료학회지
    • /
    • 제10권5호
    • /
    • pp.321-327
    • /
    • 2000
  • 다공성 알루미나 소결체내부로 3Y-TZP 및 12Ce-TZP 전구체를 각각 액상침투시킴으로써 2종류의 $Al_2O_3/TZP$복합체를 제조하였다. 소량의 (~11.0 wt%) TZP의 첨가는 Al2O3소결체 ($1600^{\circ}C$, 2시간)의 강도 (19~59%)와 파괴인성(14~157%)을 증가시켰다. 3Y-TZP의 첨가는 복합체의 강도의 향상에 12Ce-TZP의 첨가는 인성의 향상에 보다 효과적이었다. 침투도니 TZP는 복합체의 내부보다 표면에 집중되었으며, 그 결과 이곳에서의 입성장에 빨랐고 $Al_2O_3$의입성장 억제효과도 상대적으로 뛰어났다. 입계 및 입내균열전파가 일어났으나 $Al_2O_3/12Ce-TZP$의 경우가 $Al_2O_3/3Y-TZP$에 비하여 입계파괴가 우세하였다

  • PDF

액상 침투 성장법으로 제조된 $YBa_2Cu_3O_{7-y}$ 벌크 초전도체의 임계전류밀도에 대한 $CeO_2$ 첨가된 $Y_2BaCuO_5$ 분말의 밀링 효과 (Milling Effects of $Y_2BaCuO_5$ Precursor Powder with $CeO_2$ Addition on the Critical Current Density of Liquid Infiltration Growth Processed $YBa_2Cu_3O_{7-y}$ Bulk Superconductors)

  • 아시프 마흐무드;전병혁;김찬중
    • Progress in Superconductivity
    • /
    • 제12권1호
    • /
    • pp.6-11
    • /
    • 2010
  • The milling effects of a precursor $Y_2BaCuO_5$ (Y211) powder having 1 wt.% $CeO_2$ on the microstructure and critical current density ($J_c$) of liquid infiltration growth (LIG) processed $YBa_2Cu_3O_{7-y}$ (Y-123) bulk superconductors were investigated. The microstructure analysis revealed that the Y211 size in the final Y-123 products decreased with increasing the milling time and a relatively high density and uniform distribution of Y211 inclusions were observed in the sample prepared using 8 h milled powder. However, the unexpected Y211 particles coarsening was observed from the 4 h milled sample which was further increased for 10 h milled sample. Critical current density ($J_c$) of the LIG processed Y-123 bulk superconductors was found to be dependent on the milling time of the Y211 precursor powder. The $J_c$ increased with the increase of milling time and reached up to a maximum at 8 h in the self field while 10 h milled sample showed lower $J_c$ at the same field which might be due to the exaggerated growth and non-uniform distribution of Y211 particles.

탄화규소 소결체의 기계적 특성 및 마찰마모 (The Mechanical and Tribological Properties of Silicon Carbide Bodies)

  • 이승훈;김홍기;김영호;이경희
    • 한국세라믹학회지
    • /
    • 제31권11호
    • /
    • pp.1307-1314
    • /
    • 1994
  • The aim of this work is to show the way of manufacturing the SiC mechanical seal at the low temperature of 130$0^{\circ}C$ using clay and frit as source of secondary phase. $\alpha$-SiC and $\beta$-SiC powder which showed different distribution of particle were used as starting materials, i.e. average particle size of $\alpha$-SiC was larger than that of $\beta$-SiC. The mechanical and tribological properties of two groups of specimen, i.e. one contained mainly larger $\alpha$-SiC powder and the other mainly fine particle $\beta$-SiC, were measured. The specimen consisted of larger $\alpha$-SiC exhibited lower density flexural strength and wear resistance is comparison with these of sample containning mainly $\beta$-SiC . This difference could be originated from the dependence of capillary force on the particle size. For the larger SiC particle, the liquid phase may not fill the whole pores during sintering, due to low capillary force, whereas the liquid phase can infiltrate into the small ores surrounded small $\beta$-SiC particle. Thus, the course of high flexural strength and high wear resistance of specimen prepared using small particles can be explaced from the easy infiltration of liquid phase.

  • PDF

리튬용액침투법에 의한 내열충격성이 향상된 세라믹 제조 (Fabrication of Porcelains Having Improved Thermal Shock Resistance by a Lithium Solution Infiltration Method)

  • 나상문;이상진
    • 한국세라믹학회지
    • /
    • 제50권2호
    • /
    • pp.127-133
    • /
    • 2013
  • Porcelain with high thermal shock resistance was successfully fabricated by a lithium solution infiltration method with a lithium hydroxide solution. Lithium hydroxide solutions having various lithium concentrations were infiltrated into pre-sintered porcelain bodies. The porcelain sample infiltrated by the 9 wt% lithium solution and heat treated at $1250^{\circ}C$ for 1 h showed a low thermal expansion coefficient of $1.0{\times}10^{-6}/^{\circ}C$ with excellent thermal shock resistance. The highly thermally resistant porcelain had a well-developed ${\beta}$-spodumene phase with the general phases observed in porcelain. Furthermore, the porcelain showed a denser structure of $2.41g/cm^3$ sintering density and excellent whiteness in comparison with commercial thermally resistible porcelains. The lithium hydroxide in the samples readily reacted with moisture, and liquid phase reactants were formed during the fabrication process. In the case of an excess amount of lithium in the sample body, the lithium reactants were forced to the surface and re-crystallized at the surface, leaving large pores beneath the surface. These phenomena resulted in an irregular structure in the surface area and led to cracking in samples subjected to a thermal shock test.

Temporal Changes in the Hepatic Fatty Liver in Mice Receiving Standard Lieber-DeCarli Diet

  • Yin, Hu-Quan;Lee, Byung-Hoon
    • Toxicological Research
    • /
    • 제24권2호
    • /
    • pp.113-117
    • /
    • 2008
  • Chronic exposure to ethanol induces cumulative damage to the liver starting from fatty infiltration to cirrhosis depending on the dose and duration of exposure. The whole process leading to the development of alcoholic liver disease is very complex and the mechanisms involved are not fully understood. Among many experimental animal models, Lieber-DeCarli liquid diet provides moderate to severe pathophysiological outcome depending on the compositional changes. In the present study, we investigated the temporal changes in the early phase hepatic disease in rats fed with standard Lieber-DeCarli diet. Male Wistar rats were fed with Lieber-Decarli ethanol diet for 6 weeks and the liver samples were obtained after 2, 4 and 6 weeks. Mild fatty infiltration was observed in 2 weeks of feeding and it became evident in 4 and 6 week samples. The level of hepatic triglyceride showed a good agreement with the data obtained in the pathological analysis. Feeding mice with ethanol diet resulted in the maturation and translocation of SREBP-1 to nucleus in the liver. Western blot analysis of the pooled liver sample of control and ethanol fed animals showed a clear-cut time-dependent increase in the expression of nSREBP-1. These data provide important information for selecting proper time point in experimental intervention study in the field of drug development for alcoholic liver disease.

금속염화물 착색제 침투가 정방정 지르코니아 다결정체의 색조와 강도 변화에 미치는 영향 (Effect of Metal Chloride Coloring Liquids on Color and Strength Changes of Tetragonal Zirconia Polycrystals)

  • 오종진;노형록
    • 치위생과학회지
    • /
    • 제15권5호
    • /
    • pp.577-584
    • /
    • 2015
  • 본 연구에서는 $1,040^{\circ}C$에서 예비소결한 Y-TZP 시편을 크롬 염화물 0.03~0.08 wt%, 테르븀 염화물 0.03~0.07wt%를 함유한 금속염화물 수용액에 3분간 침지하고서 $1,450^{\circ}C$에서 2시간 동안 소결하였으며, 이를 금속염화물 침투가 Y-TZP 소결체의 색상, 소결밀도, 굴곡강도 및 미세조직의 변화에 미치는 영향을 조사한 결과, 다음과 같은 결론을 얻었다. 지르코니아 예비소결체에 대한 크롬과 테르븀 염화물 침투로 A1, A2 및 A3에 근사한 색조의 재현이 가능하였다. 크롬과 테르븀 염화물을 첨가했을 때 지르코니아의 결정립 크기가 증가하였다. Y-TZP 소결체의 2축 굴곡강도는 크롬과 테르븀 염화물 침투에 의해서 유의한 변화를 보이지 않았다(p>0.05). X-선 회절 분석결과, 크롬과 테르븀 염화물의 첨가 여부와 함량에 따른 지르코니아 결정상의 차이점은 관찰되지 않았다. 이상의 결과로 크롬과 테르븀 염화물을 사용하여 지르코니아의 색상을 조절할 수 있음을 확인하였고, 착색된 지르코니아의 색상은 Vita shade guide의 색상과 다소 차이가 있었지만 임상에서 이중구조 세라믹 보철물 재작 시 사용 가능할 것으로 생각된다.

Simulation of the Migration of 3H and 14C Radionuclides on the 2nd Phase Facility at the Wolsong LILW Disposal Center

  • Ha, Jaechul;Son, Yuhwa;Cho, Chunhyung
    • 방사성폐기물학회지
    • /
    • 제18권4호
    • /
    • pp.439-455
    • /
    • 2020
  • Numerical model was developed that simulates radionuclide (3H and 14C) transport modeling at the 2nd phase facility at the Wolsong LILW Disposal Center. Four scenarios were simulated with different assumptions about the integrity of the components of the barrier system. For the design case, the multi-barrier system was shown to be effective in diverting infiltration water around the vaults containing radioactive waste. Nevertheless, the volatile radionuclide 14C migrates outside the containment system and through the unsaturated zone, driven by gas diffusion. 3H is largely contained within the vaults where it decays, with small amounts being flushed out in the liquid state. Various scenarios were examined in which the integrity of the cover barrier system or that of the concrete were compromised. In the absence of any engineered barriers, 3H is washed out to the water table within the first 20 years. The release of 14C by gas diffusion is suppressed if percolation fluxes through the facility are high after a cover failure. However, the high fluxes lead to advective transport of 14C dissolved in the liquid state. The concrete container is an effective barrier, with approximately the same effectiveness as the cover.