• Title/Summary/Keyword: Liquid fuel tank

Search Result 72, Processing Time 0.027 seconds

Numerical Analysis of Vibration Characteristics in Deep Water Tank (수치해석에 의한 심수 탱크구조물의 진동에 관한 연구)

  • 배성용;홍봉기;배동명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1079-1084
    • /
    • 2003
  • A liquid storage rectangular tank structures are used in many fields of civil, mechanical and marine engineering. Especially, Ship structures have many tanks in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks ill contact with fluid near engine or propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tank structures. In the previous report, we have developed numerical tool of vibration analysis of 3-dimensional tank structure using finite elements for plates and boundary elements for fluid region. In the present report, using the numerical analysis, vibrations characteristics in deep water tank are investigated and discussed.

  • PDF

Baffled fuel-storage container: parametric study on transient dynamic characteristics

  • Lee, Sang-Young;Cho, Jin-Rae;Park, Tae-Hak;Lee, Woo-Yong
    • Structural Engineering and Mechanics
    • /
    • v.13 no.6
    • /
    • pp.653-670
    • /
    • 2002
  • In order to ensure the structural dynamic stability of moving liquid-storage containers, the flow motion of interior liquid should be appropriately suppressed by means of mechanical devices such as the disc-type elastic baffle. In practice, the design of a suitable baffle requires a priori the parametric dynamic characteristics of storage containers, with respect to the design parameters of baffle, such as the installation location and inner-hole size, the baffle number, and so on. In this paper, we intend to investigate the parametric effect of the baffle parameters on the transient dynamic behavior of a cylindrical fuel-storage tank in an abrupt vertical acceleration motion. For this goal, we employ the ALE (arbitrary Lagrangian-Eulerian) kinematic description method incorporated with the finite element method.

Volume Variation of Liquid Fuel by Seasonal, Regional Temperature Changes (계절적, 지역적 온도 변화에 따른 석유류 체적의 변화)

  • Lim, Ki Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.2
    • /
    • pp.155-163
    • /
    • 2014
  • At gas stations, liquid fuels expand and contract in volume owing to temperature variations. In Korea, the ambient temperature varies between $-15^{\circ}C$ in winter and $35^{\circ}C$ in summer. The volume expansion coefficients of liquid fuels are about $0.1%/^{\circ}C$. To investigate this issue, we measured daily changes in fuel temperature and the delivered fuel temperature at gas stations. In addition, we scrutinized the daily, monthly, and annual changes in temperature over past 50 years in Korea. The results show that the temperature of the fuel in the storage tank was maintained at a stable value(summer or winter). Many factors, such as the surrounding conditions, fuel filling frequency, and gas station location, influence the delivered fuel temperature. The results of this study can be applied for establishing a national regulation and will contribute to fair transactions.

Adiabatic Performance of Layered Insulating Materials for Bulk LH2 Storage Tanks (대용량 액체 수소 저장탱크를 위한 다층단열재의 단열성능 분석)

  • KIM, KYEONGHO;SHIN, DONGHWAN;KIM, YONGCHAN;KARNG, SARNG WOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.642-650
    • /
    • 2016
  • One of the most feasible solution for reducing the excessive energy consumption and carbon dioxide emission is usage of more efficient fuel such as hydrogen. As is well known, there are three viable technologies for storing hydrogen fuel: compressed gas, metal hydride absorption, and cryogenic liquid. In these technologies, the storage for liquid hydrogen has better energy density by weight than other storage methods. However, the cryogenic liquid storage has a significant disadvantage of boiling losses. That is, high performance of thermal insulation systems must be studied for reducing the boiling losses. This paper presents an experimental study on the effective thermal conductivities of the composite layered insulation with aerogel blankets($Cryogel^{(R)}$ Z and $Pyrogel^{(R)}$ XT-E) and Multi-layer insulation(MLI). The aerogel blankets are known as high porous materials and the good insulators within a soft vacuum range($10^{-3}{\sim}1$ Torr). Also, MLI is known as the best insulator within a high vacuum range(<$10^{-6}{\sim}10^{-3}$ Torr). A vertical axial cryogenic experimental apparatus was designed to investigate the thermal performance of the composite layered insulators under cryogenic conditions as well as consist of a cold mass tank, a heat absorber, annular vacuum space, and an insulators space. The composite insulators were laminated in the insulator space that height was 50 mm. In this study, the effective thermal conductivities of the materials were evaluated by measuring boil-off rate of liquid nitrogen and liquid argon in the cold mass tank.

Analysis of Natural Periods of Sloshing and Control of Sloshing Effect for a Launch Vehicle (슬로싱 고유주기 해석 및 발사체의 슬로싱 효과 제어)

  • 김동현;최재원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.201-201
    • /
    • 2000
  • Recently in the design of fuel tanks(launch vehicle, ship, automobile) which transport a large amount of liquid in the cargo holds, the structural damage due to liquid-sloshing becomes an important problem. The impact pressure from sloshing is most violent when the liquid motion of a partially filled tank is in resonance with the motion of a system. In this paper, the sloshing natural periods in liquid tanks are estimated for partially filled tanks with various geometries. In addition to, controlled for a launch vehicle with liquid sloshing effect by PD controller and sloshing filter The PD gain and sloshing filter parameter arc determined by optimal algorithm.

  • PDF

Unsteady Flow Analysis of Liquid Hydrazine Propellant for the Design Parameter Derivation of Satellite Propulsion System (인공위성 추진기관 설계변수 도출을 위한 Hydrazine 액체 추진제의 비정상 유동해석)

  • Choi, Jin-Chul;Kim, Jeong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.497-501
    • /
    • 2000
  • One of the way to derive design parameters of the fuel feeding system in satellite is to analyze unsteady flow of liquid propellant (hydrazine) in the propulsion system. During steady thruster firing the flow rate is constant: if a thruster valve is abruptly shut down among a sets of thrusters, pressure spikes much higher than the initial tank pressure occur. This renders the fuel flow unsteady, and the fluid pressure and flow rate to oscillate. If the pressure spikes are high enough, there are possibilities that propellant explosively decomposes, thruster valves are damaged, and adiabatic detonation of the hydrazine propellant is potentially incurred. Reflected shockwaves could also affect the calibration and operation of the pressure transducers. These necessitate the analysis of unsteady flow in the propulsion system design, and the calculation results obtained through some governing parameter variation are presented in this work.

  • PDF

Modeling and SPM Analysis of Fuel Slosh in a Rocket-Thrusting Vehicle (로켓비행체의 액체연료슬로시 모델링 및 SPM을 이용한해석)

  • Kang, J.Y.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.3
    • /
    • pp.34-42
    • /
    • 2005
  • The objectives of the study are to present simple physical and mathematical models of liquid fuel in the tank of an aerospace vehicle such launch vehicle or missile and to investigate its dynamic stability for a parameter space. In this paper, liquid in the container is modeled as multi-mass system subject to parametric excitations, and a stability diagram for determination of stable-unstable regions of the motion is obtained by using an analytical method. Also, computer simulations are conducted at various parameter points to verify the analytical results, and time histories of motion are compared to explain the effect of variation of parameters of the system.

  • PDF

Consideration for IMO Type C Independent Tank Rule Scantling Process and Evaluation Methods (IMO C형 독립탱크의 설계치수 계산과정 및 평가방법에 대한 고찰)

  • Heo, Kwang-hyun;Kang, Won-sik;Park, Bong-qyun
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.93-104
    • /
    • 2017
  • IMO type C independent tank is one of the cargo containment system specified on IGC code. It is normally adopted for small and medium size liquefied gas carrier's cargo containment system and it can be applied to fuel tank of LNG fueled vessel. This study focuses on rule scantling process and evaluation methods in early design stage of type C independent tank. Actual design results of 22K LPG/Ammonia/VCM carrier's No.2 cargo tank are demonstrated. This paper presents the calculation methods of design acceleration and liquid height for internal design pressure as defined on IGC code. And this paper shows the applied results of classification rules about shell thickness requirement and buckling strength. Additionally this paper deals with evaluation methods of structural strength and cumulative fatigue damage using FE analysis.

  • PDF

Frequency analysis of liquid sloshing in prolate spheroidal containers and comparison with aerospace spherical and cylindrical tanks

  • Mohammad Mahdi Mohammadi;Hojat Taei;Hamid Moosazadeh;Mohammad Sadeghi
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.5
    • /
    • pp.439-455
    • /
    • 2023
  • Free surface fluid oscillation in prolate spheroidal tanks has been investigated analytically in this study. This paper aims is to investigate the sloshing frequencies in spheroidal prolate tanks and compare them with conventional cylindrical and spherical containers to select the best tank geometry for use in space launch vehicles in which the volume of fuel is very high. Based on this, the analytical method (Fourier series expansion) and potential fluid theory in the spheroidal coordinate system are used to extract and analyze the governing differential equations of motion. Then, according to different aspect ratios and other parameters such as filling levels, the fluid sloshing frequencies in the spheroidal prolate tank are determined and evaluated based on various parameters. The natural frequencies obtained for a particular tank are compared with other literature and show a good agreement with these results. In addition, spheroidal prolate tank frequencies have been compared with sloshing frequencies in cylindrical and spherical containers in different modes. Results show that when the prolate spheroidal tank is nearly full and in the worst case when the tank is half full and the free fluid surface is the highest, the prolate spheroidal natural frequencies are higher than of spherical and cylindrical tanks. Therefore, the use of spheroidal tanks in heavy space launch vehicles, in addition to the optimal use of placement space, significantly reduces the destructive effects of sloshing.