• Title/Summary/Keyword: Liquid droplet

Search Result 657, Processing Time 0.023 seconds

Study on the Dissolution Behavior of Liquide $CO_2$ Hydrate Injected at the Intermediate Depth of the Ocean (중층심해에 분사된 액체 이산화탄소 하이드레이트 용해에 대한 연구)

  • Kim, Nam-Jin;Seo, Hyang-Min;Park, Sung-Seek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.597-601
    • /
    • 2008
  • Calculations for the dissolution behavior of liquid $CO_2$ droplets released in the East Sea and the Clipperton Clarion from a moving ship and a fixed pipeline have been carried out in order to estimate the $CO_2$ dissolution characteristics in the ocean. The results show that the injection of liquid $CO_2$ from a moving ship in a high temperature point is an effective method for dissolution. Also, it is noted that the ultimate plume generated from $CO_2$ bubbles repeatsand shrinking due to the peeling from a fixed pipeline, and the presence of hydrate layer on a liquid $CO_2$ droplet acts as a resistant layer in dissolving liquid $CO_2$.

  • PDF

Atomization Characteristics of a Double Impinging F-0-0-F Type Injector with Four Streams for Liquid Rockets

  • Kang, Shin-Jae;Rho, Byung-Joon;Oh, Je-Ha;Kwon, Ki-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.466-476
    • /
    • 2000
  • This paper presents atomization characteristics of a double impinging F -0-0- F type injector with four streams. A phase Doppler particle analyzer was employed to measure the droplet-size and water was used as the inert simulant liquid instead of reactive propellant liquids. The droplet mean diameter (SMD) and size distribution were measured to investigate the effects of the momentum ratio and pressure drop variations. This experimental results can be used during the preliminary design stage of a impinging stream type injector for liquid rockets.

  • PDF

A Study on the Velocity Characteristics of the Spray Formed by Two Impinging Jets (충돌 제트로 형성되는 분무의 속도 특성에 대한 연구)

  • Choo, Yeon-Jun;Oh, Dai-Jin;Kang, Bo-Seon
    • Journal of ILASS-Korea
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 2001
  • In this study, the velocity characteristics of liquid elements formed by two impinging jets is analysed using double pulse image capturing technique. For the droplets formed by low speed impinging jets, the droplet velocities are higher with smaller azimuthal and impingement angle. The maximum droplet velocities are about 25 % lower than jet velocity. With an increase of azimuthal angle, the shedding angles increases but remains lower than azimuthal angle. The velocities of ligaments formed by high speed impinging jets gradually decreases with an increase of azimuthal angle. The maximum ligament velocities are about 40% lower than jet velocity. Higher impingement angles produce lower ligament velocities. The shedding angles of ligament almost increases with the same value of azimuthal angle, which implies that the moving direction of ligaments is radial from the origin as the impingement point.

  • PDF

An Experimental Study on the Atomization Characteristics of Electrohydrodynamic for Ethanol($C_2H_5OH$) Fuel (에탄올($C_2H_5OH$) 연료의 전기수력학적 미립화 특성에 관한 실험적 연구)

  • Sung, K.A.
    • Journal of ILASS-Korea
    • /
    • v.14 no.2
    • /
    • pp.65-70
    • /
    • 2009
  • An experimental study was performed to explore the atomization characteristics as the drop formation and the liquid breakup of an ethanol fuel using an electrohydrodynamic atomizer. A developed electrohydrodynamic atomizer controlled by a high AC power, a variable frequency, and a liquid feeding was used for the experiments. The test had been considered a disperse atomization processing at $450{\sim}4200V$ applied power, $200{\sim}400\;Hz$ frequency, and $1{\sim}3\;ml/min$ ethanol feeding to achieve an uniformed droplet formation. The goal of the research was to investigate the possibility of the liquid breakup for an ethanol fuel in an electrohydrodynamic atomizer. The results showed that the mean droplet radius decreased as the applied voltage increased or as the applied AC frequency increased. The whipping motion had been grown at the specified voltages due to the applied frequency.

  • PDF

Experimental Study on the Characteristics of Micro Jet Flow Using Digital Microscopic Holography (디지털 현미경 홀로그래피 기법을 이용한 마이크로 액체 제트 유동에 관한 실험적 연구)

  • Lee, Haneol;Lee, Jaiho;Shin, Weon Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.48-53
    • /
    • 2018
  • In this study, the effect of injection pressure on the column diameter and droplet velocity of liquid jet with the weakly turbulent Rayleigh-like breakup mode is experimentally studied using digital microscopic holography (DMH). The injection nozzle has the diameter of $50{\mu}m$ and injection pressure is varied from 0.1 to 0.4 MPa. When the micro liquid jet is injected into still air, the double-pulsed holograms was recorded on a CCD sensor and numerically reconstructed in order to obtain well focused images. In this study, the liquid column diameter from $50{\mu}m$ orifice nozzle is shown to be changed slightly but the droplet velocity is increased proportionally as the injection pressure is increased.

A Study of Rivulet Flow on an Inclined Solid Surface (경사면에서의 리뷸릿 유동에 관한 연구)

  • 김진호;김호영;강병하;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.1042-1048
    • /
    • 2001
  • When a liquid is supplied through a nozzle onto a relatively non-wetting inclined solid surface, a narrow rivulet forms. This work provides novel physical insights into the following phenomena in the rivulet flow that have not been well understood to date. Firstly, the fundamental mechanism behind the transition of a linear rivulet to a droplet flow is investigated. The experiments show that the droplet flow emerges due to the necking of a liquid thread near the nozzle. Based on the observation, it is argued that when the axial velocity of a liquid is slower than the retraction velocity of its thread, the bifurcation of the liquid thread occurs, and this argument is experimentally verified. Secondly, a discussion on the curled motion of a meandering rivulet is given. This study proposes the contact angle hysteresis as a primary origin of the centripetal force that enables the rivulet\`s curved motion. A simple scaling analysis based on this assumption predicts a radius of curvature which agrees with the experimental observation.

  • PDF

LES of Breakup and Atomization Characteristics of a Liquid Jet into Cross Turbulent Flow (난류 횡단류에 수직 분사 되는 액주의 분열 및 기화 특성에 관한 LES)

  • Yang, Seung-Joon;Koo, Ja-Ye;Sung, Hong-Gye;Yang, Vigor
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • LES(Large eddy simulation) of breakup and droplet atomization of a liquid jet into cross turbulent flow was performed. Two phase flow of gas and liquid phases were modeled by the mixed numerical scheme of both Eulerian and Lagrangian methods for gas and liquid droplet respectively. The breakup process of a liquid column and droplets was observed by implementing the blob-KH wave breakup model. The penetration depth into cross flow was comparable with experimental data for several variants of the liquid-gas momentum flux ratio by varying liquid injection velocity. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

Characteristics of Icing Phenomenon with Droplet of an Injector for Liquid Phase LPG Injection System (LPG 액상분사식 인젝터에서 후적에 의한 아이싱 특성 연구)

  • Park, Cheol-Woong;Kim, Chang-Up;Choi, Kyo-Nam;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.9-16
    • /
    • 2007
  • Since the liquid phase LPG injection(LPLI) system has an advantage of higher power and lower emission characteristics than the mixer type fuel supply system, many studies and applications have been conducted. However, the heat extraction, due to the evaporation of liquid fuel, causes not only a dropping of LPG fuel but also icing phenomenon that is a frost of moisture in the air around the nozzle tip. Because both lead to a difficulty in the control of accurate air fuel ratio, it can result in poor engine performance and a large amount of HC emissions. The experimental investigation was carried out on the bench test rig in this study. It was found that n-butane, that has a relatively high boiling point($-0.5^{\circ}C$), was a main species of droplet composition and also found that the droplet problem was improved by the use of a large inner to outer bore ratio nozzle whose surface roughness is smooth. The icing phenomena were decreased when the an engine head temperature was increased, although a large amount of icing deposit was still observed in the case of $87^{\circ}C$. Also, it was observed that the icing phenomenon is improved by using anti-icing bushing.

Characteristics of Water Droplets in Gasoline Pipe Flow (가솔린 송유관에서의 수액적 거동 특성)

  • Kim, J.H.;Kim, S.G.;Bae, C.;Sheen, D.H.
    • Journal of ILASS-Korea
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Liquid fossil fuel contaminated by water can cause trouble in the combustion processes and affect the endurance of a combustion system. Using an optical sensor to monitor the water content instantaneously in a fuel pipeline is an effective means of controlling the fuel quality in a combustion system. In two component liquid flows of oil and water, the flow pattern and characteristics of water droplets are changed with various flow conditions. Additionally, the light scattering of the optical sensor measuring the water content is also dependent on the flow patterns and droplet characteristics. Therefore, it is important to investigate the detailed behavior of water droplets in the pipeline of the fuel transportation system. In this study, the flow patterns and characteristics of water droplets in the turbulent pipe flow of two component liquids of gasoline and water were investigated using optical measurements. The dispersion of water droplets in the gasoline flow was visualized, and the size and velocity distributions of water droplets were simultaneously measured by the phase Doppler technique. The Reynolds number of the gasoline pipe flow varied in the range of $4{\times}10^{4}\;to\;1{\times}10^{3}$, and the water content varied in the range of 50 ppm to 300 ppm. The water droplets were spherical and dispersed homogeneously in all variables of this experiment. The velocity of water droplets was not dependent on the droplet size and the mean velocity of droplets was equal to that of the gasoline flow. The mean diameter of water droplets decreased and the number density increased with the Reynolds number of the gasoline flow.

  • PDF

Micro-particles in a Nanoliter Droplet Dispensed by a Pneumatic Dispensing System and Its Measurement (공압 디스펜싱 시스템을 이용한 나노리터 액적에 포함된 미세 입자의 분주 및 측정)

  • Lee, Sang-Min;Kim, Joon-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.8
    • /
    • pp.913-919
    • /
    • 2012
  • This paper presents results for dispensing and measuring micro-particles using a pneumatic dispensing system. Particle-suspended liquid droplets were dispensed and analyzed quantitatively at various particle concentrations and applied pressures. By using a developed experimental setup, the number of particles and the particle volume ratio in sequentially dispensed droplets were measured. Hydrophilic and hydrophobic surfaces were tested to find a suitable surface for counting the number of particle. It was confirmed that the dispensed particles concentrated into the center of the droplet on the smooth CD surface after evaporation of liquid. As the applied positive pressure increased, the number of particles per droplet increased consistently and the volume fraction of particles remained constant.