• Title/Summary/Keyword: Liquid drop

Search Result 480, Processing Time 0.029 seconds

Stabilization technology of biogas plant applied recovery system (Recovery system 적용을 통한 바이오가스플랜트의 안정화 기술)

  • Jang, Byoungin;Jeoung, Mihwa;Cho, Yoonmi;Jo, Yongil;Park, Kyungho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.102.2-102.2
    • /
    • 2010
  • We are to evaluate the stabilization technology of actual biogas plant facilities, which is operating currently. It describes the traits of the consistent facilities of mesophilic anaerobic digestion using Unison Biogas plant Recovery system(UBR). Also the economical efficiency is examined with the electric power sales earnings and applying the deserted heating by generating electric power, which is generated by operated combined heat and power using biogas produced by mesophilic anaerobic digestion. We have generated the 481,113kw for electric power and 1,376Gcal for thermal energy simultaneously. If these electric power and thermal energy are converted into diesel, we can achieve savings equal to 114,300L, and 152,109L in the quantity of heat. Finally, if CDM, RPS, liquid fertilizer sales business, etc. is activated, the earnings will be expected to improve dramatically and is considered to contribute a drop of the greenhouse gas.

  • PDF

Development of a computer code for thermal-hydraulic design and analysis of helically coiled tube once-through steam generator

  • Zhang, Yaoli;Wang, Duo;Lin, Jianshu;Hao, Junwei
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1388-1395
    • /
    • 2017
  • The Helically coiled tube Once-Through Steam Generator (H-OTSG) is a key piece of equipment for compact small reactors. The present study developed and verified a thermal-hydraulic design and performance analysis computer code for a countercurrent H-OTSG installed in a small pressurized water reactor. The H-OTSG is represented by one characteristic tube in the model. The secondary side of the H-OTSG is divided into single-phase liquid region, nucleate boiling region, postdryout region, and single-phase vapor region. Different heat transfer correlations and pressure drop correlations are reviewed and applied. To benchmark the developed physical models and the computer code, H-OTSGs developed in Marine Reactor X and System-integrated Modular Advanced ReacTor are simulated by the code, and the results are compared with the design data. The overall characteristics of heat transfer area, temperature distributions, and pressure drops calculated by the code showed general agreement with the published data. The thermal-hydraulic characteristics of a typical countercurrent H-OTSG are analyzed. It is demonstrated that the code can be utilized for design and performance analysis of an H-OTSG.

Study of Cooling Performance Enhancement on Injector Face Plate of Rocket Engine (로켓엔진 분사면의 냉각성능 향상에 관한 연구)

  • Cho Won Kook;Seol Woo Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.215-218
    • /
    • 2005
  • An optimal fuel manifold is suggested to improve the cooling performance of injector face plate. The cooling performance at the center area of the injector face plate is to be augmented while the spatial injection uniformity is maintained. The comparison of the cooling performance of 7 candidates gives the conclusion that the dividing plate from 2-3 injector row to 9-10 injector row is an optimal. The maximum face plate temperature decreases by $27\%$ while the injection uniformity is close to that of the original design. The pressure drop in the fuel manifold of the optimal design is also same as the original design.

  • PDF

Unsteady spray characteristics of two-holes two-sprays type injectorin PFI gasoline engine (PFI용 2홀 2분무 인젝터의 비정상 분무 특성)

  • Kim, B.J.;Lee, J.H.;Cho, D.J.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.10 no.1
    • /
    • pp.43-52
    • /
    • 2005
  • The effect of fuel injection spray on engine performance has been known as one of the major concerns for improving fuel economy and reducing emissions. In general, reducing the spray droplet size could prevent HC emission in gasoline engine. As far as PFI (Port Fuel Injection) gasoline engine is concerned, the mixture of air and fuel may not be uniform under a certain condition, because breakup and production of spray droplets are made in a short distance between the fuel injector and intake valve. This study, by constituting PFI gasoline spray system, was performed to study the transient spray characteristics and dynamic behavior of droplets from 2hole 2spray type injector used in DOHC gasoline engine. Mean droplet size and optical concentration in accordance with various conditions were measured by LDPA and CCD camera. Through this study, the variation of drop size and optical concentration could be used for understanding the behavior of unsteady spray was declared and the existing the small droplets between each pulse spray could be estimated caused to the development of wall film was conformed.

  • PDF

Wetting Characteristics and Interfacial Reaction at $Al/Al_2O_3$ Interface ($Al/Al_2O_3$ 계면의 젖음특성 및 계면반응)

  • 권순용;정대영;최시경;구형회;이종수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.8
    • /
    • pp.815-822
    • /
    • 1994
  • Sessile drop studies of molten Al on single crystal sapphire substrate were conducted to understand the wetting behavior and interfacial reaction at Al/Al2O3 interface. To investigate the wetting mechanism, the variation in contact angle was determined with time. The contact angle obtained in this study decreased exponentially with time. This result means that the driving force for wetting is the reduction in interfacial energy between liquid Al and sapphire caused by the interfacial reaction. The closer examination revealed that the reaction was the dissolution of sapphire by molten Al. Ti has been frequently used to improve wetting on ceramic materials. Therefore, the influence of Ti content on the wetting behaviour was investigated in this work. The equilibrium wetting angles of pure Al, Al-0.3 wt%Ti, and Al-1.0 wt%Ti at 100$0^{\circ}C$ were 63$^{\circ}$, 59$^{\circ}$, and 54$^{\circ}$respectively. The difference is considered as the result of the change in interfacial energy caused by the reaction between Ti and sapphire and the interfacial reaction formed the reaction products of varying stoichiometry (TiO, Ti2O3, TiO2 etc.).

  • PDF

Measurement of the Single and Size-Classified Raindrops

  • Ma, Chang-Jin;Mikio Kasahara;Hwang, Kyung-Chul;Park, Kum-Chan;Kim, Hui-Kang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.E
    • /
    • pp.73-79
    • /
    • 1999
  • To Characterize the single raindrops as a function of their size we designed the sampling and handling apparatuses. Samplings of single and size- classified raindrops were performed at a height of 20m above the ground level of a Kyoto University building located in Uji, Japan in rain events from middle of July to the end of August, 1999. And PIXE method was applied to the analysis of single raindrops sampled as a function of their size. Diameter change of frozen raindrops by liquid nitrogen did nto affect the size segregation ability of our sampling apparatus. The number of raindrops increases with decreasing drop size. And it is found that the size distribution of raindrops verified depends on the rain events. Application of PIXE analysis to the measurement of single raindrops was very successful. Every element showed a continuous increase in concentration with decreasing raindrop diameter. It seems reasonable to say that our work should be helpful to obtain more detailed information on single raindrops and especially to study on the rainout and washout mechanisms.

  • PDF

A NUMERICAL STUDY ON THE FLOW CHARACTERISTICS OF GAS CHROMATOGRAPHIC COLUMN (가스 크로마토그래픽 컬럼의 유동특성에 대한 수치적 연구)

  • Kim T.-A.;Kim Youn J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.21-26
    • /
    • 2005
  • Gas Chromatography (GC) is a wisely technique used for the separation and analysis of liquid and gas sample. Separation of the sample vapors is achieved via their differential migration through a capillary column with an insert carrier gas. The identity and quantity of each vapor in the mixer can be determined from its retention time in the column and a particular property of the gas, such as thermal conductivity, which can be related to the concentration of sample vapor in the carrier gas. Therefore, the flow characteristics in the spiral gas chromatographic column are numerically investigated in this study. Especially, different pressure drop between the front and the rear of GC column with various flow rates is estimated the governing equations are derived from making using of three-dimensional Naver-Stokes equation with incompressible and laminar model due to the nature of low Reynolds number flow. Using a commercial code, FLUENT, the pressure and flow fields in GC column are calculated with various flow rates. The characteristics of thermal cycling which is one of the most important factors affecting the column efficiency and analysis time is also estimated. Furthermore, numerical analyses are also carried out by using commercial code, ANSYS, with various values of power, which is applied to the heating element located at lower GC column.

  • PDF

Cooling Performance Analysis of Regeneratively Cooled Combustion Chamber (재생냉각 연소실의 냉각성능 해석)

  • Cho, Won-Kook;Seol, Woo-Seok;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.67-72
    • /
    • 2004
  • A regenerative cooling system has been designed through empirical 1-D analysis for a liquid rocket engine of 30-ton-level thrust. The hot-gas-side wall temperature from 1-D analysis shows 100K difference compared to 3D CFD analysis. Two variations of design with same cooling performance are suggested for different maximum channel widths i.e., 4mm and 2mm. The coolant pressure drop of the latter design is higher by 20%. The maximum liner temperature is about 700K when TBC and the thermal resistance of carbon deposit are considered. So film cooling is recommended to increase the cooling capacity as the present cooling capacity is insufficient

Promoted Growth of Maize by the Phosphate Solubilizing Bacteria Isolated from North-east China

  • Wu, Hai-Yan;Wang, Li-Chun;Gao, Xing-Ai;Jin, Rong-De;Fan, Zuo-Wei;Kim, Kil-Yong;Zhao, Lan-Po
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.112-117
    • /
    • 2011
  • A strain of phosphate solubilizing bacterium was isolated from rhizosphere and identified as Burkholderia sp. by 16S-rRNA gene sequence analyses. The bacterium was found to release gluconic acid and the solubilization of hydroxyapatite in the liquid medium by a significant drop in pH to 3.7 from an initial pH 7.0. The soluble-P concentration continuously increased during the incubation periods and the total amount of soluble P released in culture filtrate was detected at 990 mg $L^{-1}$ after 10 days of inoculation. Most promoted maize growth was found in the standard NPK (240-120-120 kg $ha^{-1}$) soil inoculation with Burkholderia sp. (Twenty milliliters/plant, 106 CFU) and also in the absence of Burkholderia sp. inoculation, the soil amended with only 2/3 levels of P gave significant higher plant yield compared to 1/3 levels of P or without P supplementation.

A Survey on the Droplet Generators and Principle of Droplet Generation (액적 발생기의 종류 및 액적 발생 원리에 대한 고찰)

  • Park, Bong-Yeop;Han, Jae-Seob;Kim, Seon-Jin;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.54-60
    • /
    • 2000
  • Most droplet generators are based on the Rayleigh's theory of droplet breakup, and various kind of droplet generation devices have been designed in accordance with vibrating method of capillary liquid column. At present, VOAG(Vibrating Orifice Monodisperse Aerosol Generator) is used to generate primary aerosol standards. For the combustion experiments with isolated single droplet, it is found that dripping method or separating method of suspended drop at an end of filament are more effective. Single drops can be separated from continuous streams of droplets by controlling electric charge.

  • PDF