• Title/Summary/Keyword: Liquid direct contact cooling

Search Result 11, Processing Time 0.015 seconds

Thermal Conductivity and Dielectric Strength Measurement of the Impregnating Materials for the Next Generation Winding Type Superconducting Fault Current Limiter (차세대권선형한류기를 위한 함침용 재료의 열전도도 및 절연 내력 측정)

  • Yang Seong Eun;Bae Duck Kweon;Ahn Min Cheol;Kang Hyoung Ku;Seok Bok Yeol;Chang Ho Myung;Kim Sang Hyun;Ko Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.1
    • /
    • pp.42-46
    • /
    • 2005
  • The resistive type high temperature superconducting fault current limiter (HTSFCL) limits the fault current using the resistance generated by fault current. The generated resistance by fault current makes large pulse power which makes the operation of HTSFCL unstable. So, the cryogenic cooling system of the resistive type HTSFCL must diffuse and eliminate the pulse energy very quickly. Although the best way is to make wide direct contact area between HTS winding and coolant as much as possible, HTS winding also needs the impregnation layer which fixes and protects it from electromagnetic force. This paper deals with the thermal conductivity and dielectric strength of some epoxy compounds for the impregnation of high temperature superconducting (HTS) winding in liquid nitrogen. The measured data can be used in the optimal design of impregnation for HTS winding. Aluminar filling increased the thermal conductivity of epoxy compounds. Hardener also affected the thermal and electric characteristic of epoxy compounds.