• 제목/요약/키워드: Liquid desiccant

검색결과 30건 처리시간 0.026초

확장표면을 적용한 액체식 제습기에서 제습액 분배 특성에 관한 실험적 연구 (Experimental Study on Liquid Desiccant Distribution Characteristics at a Dehumidifier with Extended Surface)

  • 이민수;장영수;이대영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.645-649
    • /
    • 2009
  • Liquid desiccant cooling technology can supply cooling by using waste heat and solar heat which are hard to use effectively. For compact and efficient design of a dehumidifier, it is important to sustain sufficient heat and mass transfer surface area for water vapor diffusion from air to liquid desiccant on heat exchanger. In this study, the plate type heat exchanger is adopted which has extended surface, and hydrophilic coating and porous layer coating are adopted to enhance surface wettedness. PP(polypropylene) plate is coated by porous layer and PET(polyethylene terephthalate) non-woven fabric is coated by hydrophilic polymer. These coated surfaces have porous structure, so that falling liquid film spreads widely on the coated surface foaming thin liquid film by capillary force. The temperature of liquid desiccant increases during dehumidification process by latent heat absorption, which leads to loss of dehumidification capacity. Liquid desiccant is cooled by cooling water flowing in plate heat exchanger. On the plate side, the liquid desiccant can be cooled by internal cooling. However the liquid desiccant on extended surface should be moved and cooled at heat exchanger surface. Optimal mixing and distribution of liquid desiccant between extended surface and plate heat exchanger surface is essential design parameter. The experiment has been conducted to verify effective surface treatment and distribution characteristics by measuring wall side flow rate and visualization test. It is observed that hydrophilic and porous layer coating have excellent wettedness, and the distribution can be regulated by adopting holes on extended surface.

  • PDF

확장표면을 적용한 액체식 제습기의 열물질 전달 모델링 (Modelling of the Heat and Mass Transfer in a Liquid Desiccant Dehumidifier with Extended Surface)

  • 장영수;이대영
    • 설비공학논문집
    • /
    • 제23권4호
    • /
    • pp.303-311
    • /
    • 2011
  • This study presents a new idea of liquid desiccant dehumidifier with extended surface to improve the compactness. Extended surface is inserted between vertical cooling tubes, and the liquid desiccant flows down along the tube walls and the extended surface as well. Though the extended surface contributes to the increase in the mass transfer area, the effect tends to be limited because less conductive non-metallic materials need to be applied due to the high corrosiveness of liquid desiccant. To analyze the effects of the extended surface insertion, mathematical modelling and numerical integration are performed for the heat and mass transfer in the liquid desiccant dehumidifier. The results show that, though the liquid desiccant on the extended surface is heated due to the moisture absorption, the temperature can be maintained by periodic mixing at the contact points between the tube and the extended surface with the liquid desiccant stream from the tube side at a relatively low temperature. This implies the absorption heat from the extended surface side can be removed effectively by mixing, which leads to a substantial improvement of the dehumidification in the liquid desiccant dehumidifier with extended surface. When the interval of the extended surface, $p_e/L$, is less than 0.1, the dehumidification is shown to increase by more than two times compared with that without extended surface.

확장표면을 적용한 액체식 제습시스템의 성능특성에 관한 연구 (Performance characterization of liquid desiccant system with extended surface)

  • 장영수;송귀은;이대영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.639-644
    • /
    • 2009
  • This study presents the new idea of liquid desiccant system with extended surface to reduce the system size. The extended surface is inserted between vertical cooling/heating tubes to increase the mass transfer area, and the liquid desiccant flows through the tube wall and the extended surface. Mathematical models for heat and mass transfer between liquid desiccant and air stream at tube wall and extended surface are provided. Dimensionless design parameters governing heat and mass transfer phenomena around the tube and the extended surface are identifier, and dimensionless operating parameters depicting system operating condition including flow rate ratio between dehumidification/regeneration processes, and mass flow rate ratio between air stream and liquid desiccant are explained. The effects of the parameters on system performance are summarized.

  • PDF

액체 건조제 제습을 위한 핀튜브형 재생기의 성능인자 영향 연구 (Study on the Effect of Performance Factors on the Finned Tube Type Regenerator for Liquid Desiccant Dehumidification)

  • 장준오;박문수;강경태;이신표;이진수
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.845-852
    • /
    • 2003
  • Liquid desiccant dehumidification system can be used effectively to save energy consumed in air conditioning as an alternative compared with conventional air conditioning systems by reducing latent heat load. The dehumidifier and the regenerator from the heart of this system. The latent part of the cooling load is handled using liquid desiccant. In this study, the experimental regenerator has been designed to study the regeneration characteristics of the aqueous triethylene glycol(TEG) system. The performance factors of the regenerator with finned tube heat exchanger were evaluated by a series of experimental runs. The regeneration process is highly dependent on the liquid desiccant conditions, such as, temperature, concentration and flow rate. In addition, the effects of the inlet air temperature, humidity and flow rate were discussed. Data obtained are useful for design guidance and performance analysis of a regenerator, particularly for a liquid desiccant cooling system.

태양열 온수기를 이용한 다목적 공조시스템의 재생효율에 관한 연구(제1보 액체흡수제 온도가 재생량에 미치는 영향) (Research on the Performance of Regenerator using Hot Water from Solar Water Heater(1st paper : On the Effect of Solution Temperature to Regeneration Rate))

  • 우종수;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제24권1호
    • /
    • pp.53-61
    • /
    • 2004
  • Absorption potential of desiccant solution significantly decreases after absorbing moisture from humid air, and a regeneration process requires a great amount of energy to recover absorption potential of desiccant solution. In an effort to develop an efficient solar water heater, this study examines a regeneration process using hot water obtained from solar water heater to recover absorption potential by evaporating moisture in the liquid desiccant. In this paper, a solar absorption dehumidifying system with solar water heater is suggested to save the electricity for operating an air conditioner. LiGl(lithium chloride) solution was adopted as a liquid desiccant in the proposed system, and hot water obtained from the solar water heater was used for regenerating the liquid desiccant. As a result, it was clear that the dilute LiCl solution could be regenerated by hot water, and the regeneration rate depends mostly on temperature level of liquid desiccant. The regeneration rates were about 2.4kg/h with $40^{\circ}C$, 4.0kg/h with $50^{\circ}C$, and 6.2kg/h with $60^{\circ}C$ of hot water respectively.

Study on the Equilibrium Point of Heat and Mass Transfer between Liquid Desiccant and Humid Air with in the Solar Air Conditioning System

  • Sukmaji, I.C.;Rahmanto, H.;Agung, B.;Choi, K.H.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.161-167
    • /
    • 2009
  • The liquid solar air conditioning system is introduced as an alternative solution to control air condition and to save electrical energy consumption. The heat and mass transfer performances of dehumidifier/regenerator in liquid solar air conditioning system are influenced by air and desiccant condition. The application of this system, the thermal energy from the sun and inlet air are unable to control, but operation parameter of other components such as pump, fan and sensible cooling unit are able to control. The equilibrium point of heat and mass transfer are the liquid desiccant and inlet air conditions, where, the heat and mass are not transferred between the liquid desiccant and vapor air. By knowing equilibrium point of heat and mass transfer, the suitable optimal desiccant conditions for certain air condition are funded. This present experiment study is investigated the equilibrium point heat and mass transfer in various air and desiccant temperature. The benefit of equilibrium point heat and mass transfer will be helpful in choose and design proper component to optimize electrical energy consumption.

  • PDF

습식건조제 이용 제습에서의 증발기 성능인자 영향 연구 (Study on the Effect of Performance Factors on the Evaporator Using Liquid Desiccant Falling Flim for Dehumidification)

  • 박문수
    • 설비공학논문집
    • /
    • 제7권3호
    • /
    • pp.512-520
    • /
    • 1995
  • This study investigates the simultanceous heat and mass transfer between a falling desiccant film and air in cross flow at the interface. The application of this work is the optimization of falling film evaporators for use in potential hybrid air conditioning systems. The specific geometry considered is liquid TEG films falling along the vertical cooled surfaces of a channel with air in cross flow. The equations to describe the coupled heat and mass transfer between a falling desiccant film and air in cross flow for a falling film evaporator have been presented and solved numerically. The effects of important design and operating variables on the evaporator performance predicted by the parametric numerical analysis and suggestions for performance improvements of the evaporator are presented.

  • PDF

Study on the Performances of Air Flow Fate Effect on a Structured Packed Tower at Adiabatic Condition in a Liquid Lithium Chloride Cooling System

  • Bakhtiar, Agung;Choi, K.H.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 추계학술발표대회 논문집
    • /
    • pp.404-408
    • /
    • 2009
  • The liquid desiccant air-conditioning system has been proposed as an alternative to the conventional vapor compression cooling systems to control air humidity. The complete system of liquid desiccant air-conditioning system is consisted two main components those are humidifier (regeneration) and dehumidifier. Humidifier part is connected to the load when summer season which is the air condition is hot and humid have to be turned into comfort condition on human. This paper purpose is performances study of air flow rate effect on a structured packed tower on cooling and dehumidifier system using liquid lithium chloride as the desiccant. Experimental apparatus used in this present study is consisted of three components those are load chamber, packed tower and chiller. Load chamber’s volume is $40m^3$, and packed tower dimension is cubic with length 0.4m occupied with packed column. Totally, 15 experimental has done using 5 times repeat on each variable of air velocity that varying on 2m/s, 3m/s and 4m/s with other conditions are controlled. Air inlet initial temperature and relative humidity are set respectively on $30^{\circ}C$ and 52%, desiccant flow rate is 0.63 kg/s, desiccant temperature is $10^{\circ}C$ and desiccant concentration is 0.4. The result of this study shows that averagely, the moisture removal rate and the heat transfer rate are influenced by the air velocity. Higher air velocity will increase the heat transfer and decreasing the moisture removal rate. At adiabatic condition the air velocity of 2 m/s respectively is having the higher moisture removal rate acceleration then the air velocity of 3m/s and 4 m/s until the steady state condition.

  • PDF

Experimental Study on Mass Transfer Rate at the Packed Column of Solar Cooling Liquid Desiccant System Using Counter Flow Configuration

  • Hengki R, R.;Choi, K.H.;Yohana, Eflita;Sukmaji, I.C.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.155-161
    • /
    • 2009
  • Desiccant systems have been proposed as energy saving alternatives to vapor compression air conditioning for handling the latent load. Use of liquid desiccants offers several design and performance advantages over solid desiccants, especially when solar energy is used for regeneration. The liquid desiccants contact the gas inside the packed column and the heat transfer and mass transfer will occur. This proposal is try study the mass transfer and heat transfer inside the packed column of dehumidifier and regenerator systems. And later on, the rates of dehumidification and regeneration that were affected by desiccant flow rates, air temperature and humidity, and desiccant temperature and all that variation will influence the performance of the systems.

  • PDF

휜-튜브형 액체건조제 제습기의 높이에 따른 성능특성에 관한 실험적 연구 (An Experimental Study on the Performance Characteristics with Height of a Fin-Tube Liquid Desiccant Dehumidifier)

  • 이수동;박문수;정진은;최영석
    • 대한기계학회논문집B
    • /
    • 제28권5호
    • /
    • pp.594-603
    • /
    • 2004
  • Several desiccant cooling systems have been developed in terms of cost and performance. In this study a fin-tube exchanger has been used for liquid desiccant dehumidification system. This dehumidifier has been designed to study the absorption characteristic of the aqueous triethylene glycol(TEG) solution which has the flow range from 20 to 50 LPM. The dehumidifier performance characteristics of working factor variables such as inlet solution flow rate, air flow rate, solution concentration and brine temperature have been analyzed. This dehumidifier has the ability to provide running while saving the latent heat load of total energy. The result of this experiment can provide useful data for hybrid air conditioning system.