• Title/Summary/Keyword: Liquid core

Search Result 393, Processing Time 0.038 seconds

The Optimization of Chemical Treatments through the Six Sigma Innovation Activity (6시그마 혁신활동을 통한 약품처리 최적화)

  • Kim Tai Kyoo;Kim Hong Chul
    • Journal of Korea Technology Innovation Society
    • /
    • v.7 no.3
    • /
    • pp.641-656
    • /
    • 2004
  • L Company is producing the second sept pin, Shadow Mask which is the chief part of CRT in W, Monitor. Inside of the CRT pan, Shadow Mask leads the electronic beam to express the three primary colors; red, green, blue, and it is the core part to embody the colors. In the etching process, it produces this part with manufacturing by eroding the iron chloride. Even though the iron chloride is harmless to human body. it is necessary to diminish the amount of it on the view of preservation of environment. In addition, by studying the method of the dispossed liquid process, cutting down the manufacturing cost is a necessary task on the aspect of reconsideration of competitive business. This study shows the case that through the six sigma innovation activity, it reforms the following the former processing flow, and it reduces the amount of it by improving the efficiency of the iron chloride. By rationalization of the standard requirement cooperative company, it could cut down the manufacturing cost in the cooperative company, so it could promote the common profits.

  • PDF

Ceramic magnetic core material for coupling unit under the condition of high voltage as a part of the PLC (전력선 통신(PLC)을 위한 HV 커플러용 자심재료)

  • 이해연;김현식;오영우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.365-368
    • /
    • 2000
  • We have studies on the Microstructures and densities as a function of forming pressures and the magnetic properties of the specimens with additive Bi$_2$O$_3$ that sintered at 95$0^{\circ}C$ for 4.5 hours for synthesizing optimal Ni-Cu-Zn ferrite. Green density rose generally as Forming pressure increased from 1.7 ton/cm$^2$to 2.5 ton/cm$^2$and Cold Isostatic Pressure(CIP) method was more effective than Die Pressure(DP) method to high green density. Forming pressure had no influence on apparent density but on the other hand Bi$_2$O$_3$contents were strongly dominant to appaernt density than forming pressure. Bi$_2$O$_3$liquid phases created during sintering process promoted sintering and grain growth so that apparent density, grain size and permeability increased compared to that of the specimens which were sintered with non-additive Bi$_2$O$_3$.

  • PDF

Fabrication of 6-superconducting layered HTS wire for high engineering critical current density

  • Kim, Gwantae;Ha, Hongsoo;Kim, Hosup;Oh, Sangsoo;Lee, Jaehun;Moon, Seunghyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.10-13
    • /
    • 2021
  • Recently, cable conductors composed of numerous coated conductors have been developed to transport huge current for large-scale applications, for example accelerators and fusion reactors. Various cable conductors such as CORC (Conductor on round core), Roebel Cable, and TSTC (Twisted stacked tape cable) have been designed and tested to apply for large-scale applications. But, these cable conductors cannot improve the engineering critical current density (Je) because they are made by simple stacking of coated conductors. In this study, multi-HTS (High temperature superconductor) layers on one substrate (MHOS) wire was fabricated to increase the engineering critical current density by using the exfoliation of superconducting layer from substrate and silver diffusion bonding method. By the repetition of these processes, the 10 m long 6-layer MHOS conductor was successfully fabricated without any intermediate layers like buffer or solder. 6-layer MHOS conductor exhibited a high critical current of 2,460A/12mm-w. and high engineering critical current density of 1,367A/mm2 at liquid nitrogen temperature.

A methodology for the identification of the postulated initiating events of the Molten Salt Fast Reactor

  • Gerardin, Delphine;Uggenti, Anna Chiara;Beils, Stephane;Carpignano, Andrea;Dulla, Sandra;Merle, Elsa;Heuer, Daniel;Laureau, Axel;Allibert, Michel
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1024-1031
    • /
    • 2019
  • The Molten Salt Fast Reactor (MSFR) with its liquid circulating fuel and its fast neutron spectrum calls for a new safety approach including technological neutral methodologies and analysis tools adapted to early design phases. In the frame of the Horizon2020 program SAMOFAR (Safety Assessment of the Molten Salt Fast Reactor) a safety approach suitable for Molten Salt Reactors is being developed and applied to the MSFR. After a description of the MSFR reference design, this paper focuses on the identification of the Postulated Initiating Events (PIEs), which is a core part of the global assessment methodology. To fulfil this task, the Functional Failure Mode and Effect Analysis (FFMEA) and the Master Logic Diagram (MLD) are selected and employed separately in order to be as exhaustive as possible in the identification of the initiating events of the system. Finally, an extract of the list of PIEs, selected as the most representative events resulting from the implementation of both methods, is presented to illustrate the methodology and some of the outcomes of the methods are compared in order to highlight symbioses and differences between the MLD and the FFMEA.

PILLAR: Integral test facility for LBE-cooled passive small modular reactor research and computational code benchmark

  • Shin, Yong-Hoon;Park, Jaeyeong;Hur, Jungho;Jeong, Seongjin;Hwang, Il Soon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3580-3596
    • /
    • 2021
  • An integral test facility, PILLAR, was commissioned, aiming to provide valuable experimental results which can be referenced by system and component designers and used for the performance demonstration of liquid-metal-cooled, passive small modular reactors (SMRs) toward their licensing. The setup was conceptualized by a scaling analysis which allows the vertical arrangements to be conserved from its prototypic reactor, scaled uniformly in the radial direction achieving a flow area reduction of 1/200. Its final design includes several heater rods which simulate the reactor core, and a single heat exchanger representing the steam generators in the prototype. The system behaviors were characterized by its data acquisition system implementing various instruments. In this paper, we present not only a detailed description of the facility components, but also selected experimental results of both steady-state and transient cases. The obtained steady-state test results were utilized for the benchmark of a system code, achieving a capability of accurate simulations with ±3% of maximum deviations. It was followed by qualitative comparisons on the transient test results which indicate that the integral system behaviors in passive LBE-cooled systems are able to be predicted by the code.

Numerical study on thermal-hydraulics of external reactor vessel cooling in high-power reactor using MARS-KS1.5 code: CFD-aided estimation of natural circulation flow rate

  • Song, Min Seop;Park, Il Woong;Kim, Eung Soo;Lee, Yeon-Gun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.72-83
    • /
    • 2022
  • This paper presents a numerical investigation of two-phase natural circulation flows established when external reactor vessel cooling is applied to a severe accident of the APR1400 reactor for the in-vessel retention of the core melt. The coolability limit due to external reactor vessel cooling is associated with the natural circulation flow rate around the lower head of the reactor vessel. For an elaborate prediction of the natural circulation flow rate using a thermal-hydraulic system code, MARS-KS1.5, a three-dimensional computational fluid dynamics (CFD) simulation is conducted to estimate the flow rate and pressure distribution of a liquid-state coolant at the brink of significant void generation. The CFD calculation results are used to determine the loss coefficient at major flow junctions, where substantial pressure losses are expected, in the nodalization scheme of the MARS-KS code such that the single-phase flow rate is the same as that predicted via CFD simulations. Subsequently, the MARS-KS analysis is performed for the two-phase natural circulation regime, and the transient behavior of the main thermal-hydraulic variables is investigated.

The Insulation Design of HTS Transformer and Bushing (고온초전도 변압기 및 부싱의 절연설계)

  • Cheon, H.G.;Choi, J.H.;Pang, M.S.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.3
    • /
    • pp.12-15
    • /
    • 2010
  • Important key technologies of high-$T_c$ superconducting (HTS) transformer may include the HTS wire technology, bushing technology, cooling technology, AC loss, reduction technology, large current technology, and cryogenic temperature insulation technology. From among others, the cryogenic temperature insulation technology may be specifically a core technology for ensuring reliability for the smaller size, stability, economic efficiency, and power supply of a transformer. Therefore, the electric insulation technology of a superconducting transformer should be prerequisite. Such relevant studies are ongoing, but still, they are very insufficient for establishing the cryogenic insulation technology as of yet. Therefore, this paper simulated HTS transformer applied with continuous transposed conductor (CTC), which has been studied as a way of reducing AC loss. Also, the paper analyzed the insulation configuration of HTS transformer and bushing, and, accordingly, reviewed various characteristics of insulation breakdown out of liquid nitrogen. Thus, the paper constituted insulation database, and it is going to design the insulation of a transmission class HTS transformer and bushing.

Uncertainty analysis of heat transfer of TMSR-SF0 simulator

  • Jiajun Wang;Ye Dai;Yang Zou;Hongjie Xu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.762-769
    • /
    • 2024
  • The TMSR-SF0 simulator is an integral effect thermal-hydraulic experimental system for the development of thorium molten salt reactor (TMSR) program in China. The simulator has two heat transport loops with liquid FLiNaK. In literature, the 95% level confidence uncertainties of the thermophysical properties of FLiNaK are recommended, and the uncertainties of density, heat capacity, thermal conductivity and viscosity are ±2%, ±10, ±10% and ±10% respectively. In order to investigate the effects of thermophysical properties uncertainties on the molten salt heat transport system, the uncertainty and sensitivity analysis of the heat transfer characteristics of the simulator system are carried out on a RELAP5 model. The uncertainties of thermophysical properties are incorporated in simulation model and the Monte Carlo sampling method is used to propagate the input uncertainties through the model. The simulation results indicate that the uncertainty propagated to core outlet temperature is about ±10 ℃ with a confidence level of 95% in a steady-state operation condition. The result should be noted in the design, operation and code validation of molten salt reactor. In addition, more experimental data is necessary for quantifying the uncertainty of thermophysical properties of molten salts.

Thermal study of the emergency draining tank of molten salt reactor

  • C. Peniguel
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.793-802
    • /
    • 2024
  • In the framework of the European project SAMOSAFER, this numerical study focuses on some thermal aspects of the Emergency Draining Tank (EDT) located underneath the core of a Molten Salt Reactor. In case of an emergency, this tank passively receives the liquid fuel salt and is designed to ensure a subcritical state. An important requirement is that the fuel does not overheat to maintain the EDT Hastelloy container integrity. The present EDT is based upon a group of hexagonal cooling assemblies arranged in a hexagonal grid and cooled down thanks to conduction through the inert salt layer up to an air flow in charge of removing the heat. This numerical thermal study relies on a conjugated heat transfer analysis coupling a Finite Element solid thermal code (SYRTHES) and two instances of a Finite Volume CFD codes (Code_Saturne). Calculations on an initial design suggest that a simple center airpipe flow is likely to not sufficiently cool the device. Alternative solutions have been evaluated. Introduction of fins to enhance the heat transfer do not bring a noticeable improvement regarding maximum temperature reached. However, a solution in which the central pipe air flow is replaced by several cooling channels located closer to the fuel is investigated and suggests a better cooling.

Biocontrol of Peach Gummosis by Bacillus velezensis KTA01 and Its Antifungal Mechanism

  • Tae-An Kang;GyuDae Lee;Kihwan Kim;Dongyup Hahn;Jae-Ho Shin;Won-Chan Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.296-305
    • /
    • 2024
  • Peach tree gummosis is a botanical anomaly distinguished by the secretion of dark-brown gum from the shoots of peach trees, and Botryosphaeria dothidea has been identified as one of the fungal species responsible for its occurrence. In South Korea, approximately 80% of gummosis cases are linked to infections caused by B. dothidea. In this study, we isolated microbes from the soil surrounding peach trees exhibiting antifungal activity against B. dothidea. Subsequently, we identified several bacterial strains as potential candidates for a biocontrol agent. Among them, Bacillus velezensis KTA01 displayed the most robust antifungal activity and was therefore selected for further analysis. To investigate the antifungal mechanism of B. velezensis KTA01, we performed tests to assess cell wall degradation and siderophore production. Additionally, we conducted reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis based on whole-genome sequencing to confirm the presence of genes responsible for the biosynthesis of lipopeptide compounds, a well-known characteristic of Bacillus spp., and to compare gene expression levels. Moreover, we extracted lipopeptide compounds using methanol and subjected them to both antifungal activity testing and high-performance liquid chromatography (HPLC) analysis. The experimental findings presented in this study unequivocally demonstrate the promising potential of B. velezensis KTA01 as a biocontrol agent against B. dothidea KACC45481, the pathogen responsible for causing peach tree gummosis.