• Title/Summary/Keyword: Liquid compost

Search Result 91, Processing Time 0.028 seconds

A Study on the Nutrient Composition and Heavy Metal Contents in Livestock Manure Compost·Liquefied Fertilizer (가축분뇨 퇴비·액비의 비료성분 및 중금속 함량에 관한 연구)

  • Ahn, Taeung;Kim, Dongmin;Lee, Heungsoo;Shin, Hyunsang;Chung, Eugene
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.4
    • /
    • pp.306-314
    • /
    • 2021
  • The application of organic fertilizer could be accompanied by potential hazards to soil and humans due to trace metals. Livestock manure compost·liquefied fertilizer is a well-established approach for the stabilization of nutrients and the reduction of pathogens and odors in manures, which can be evaluated as compost·liquefied. In this study, the livestock manure compost·liquefied fertilizers produced at 333 liquid manure public resource centers and liquid fertilizer distribution centers were collected from May to December 2019. The nutrient content (nitrogen, phosphorus, and potassium), physicochemical properties, and heavy metal content were investigated. The livestock manure compost·liquefied fertilizer was measured using a mechanical maturity measurement device. The organic matter, arsenic, cadmium, mercury, lead, chromium, copper, nickel, zinc, E. coli (O157:H7), Salmonella, etc. of the livestock manure compost·liquefied fertilizers were analyzed. The average heavy metal content in the livestock manure compost·liquefied fertilizer was as follows: Cr 2.9 mg/kg (0.2~8.7 mg/kg), Cu 20.4 mg/kg (1.6~74.1 mg/kg), Ni 1.3 mg/kg (0.4~4.2 mg/kg), and Zn 79.8 mg/kg (3.0~340.7 mg/kg). Although large-scale organic fertilizer plants and resources recycling centers produce good organic (liquid) fertilizers with proper components, it is necessary to standardize livestock manure compost·liquefied fertilizer in order to facilitate efforts to turn livestock manure into useful resources.

Evaluation of Ammonia Emission from Arable Soil applied Liquid Manure and Compost (가축분 퇴.액비 시용에 따른 암모니아 휘산량 평가)

  • Lee, Yong-Bok;Yun, Hong-Bae;Lee, Youn;Kaown, Dug-In
    • 한국환경농학회:학술대회논문집
    • /
    • 2009.07a
    • /
    • pp.329-338
    • /
    • 2009
  • Emission of ammonia to the atmosphere are considered a threat to the environment. The application of livestock manure and compost contributes significantly to the emission of ammonia from agriculture. The reduction in NH3 losses from field-applied manure and compost would be a good strategy to reduce national $NH_3$ emission. In this study, various application techniques of liquid manure and compost were compared to evaluate their potential for reducing $NH_3$ emission. In compost application, the reductions in $NH_3$ emission were 70 and 15% for immediately rotary after application (IRA) and rotary at 3-day after application (RA-3d) in comparison with surface application (SA). Total ammonia emissions for 13 days, expressed as % ammonia-N applied in compost, were 42, 35.7, and 12.7% for SA, RA-3d, and IRA treatments, respectively. Mean reductions in NH3 emission from application of liquid pig manure were 26 and 50% for rotary harrow after surface broadcast application in spring and fall, respectively, in comparison with surface broadcast application. Ammonia emission rate was decreased with increasing water content in soil due to dilution effect, but this reduction only was temporary up to 12 hours after application and cumulative $NH_3$ emission was increased with increasing water content in soil. However, the delay would be beneficial because it allows time for rotary hallow of the applied liquid pig manure. Therefor, ammonia emission can be reduced by immediately incorporation of liquid manure and compost after surface application.

  • PDF

The Nutrients and Microbial Properties of Animal Manure and Spent Mushroom Compost Tea and the Effect of Growth of Lettuce (Lactuca sativa L.) (가축분뇨와 폐버섯 퇴비차의 양분 및 미생물적 특성과 상추의 생육에 미치는 영향)

  • Ryoo, Jong-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.4
    • /
    • pp.589-602
    • /
    • 2011
  • In this study, experiments were conducted to determine the effect of different compost teas on plant growth reponses and yield of leaf lettuce. Compost tea is a liquid extract of compost obtained by mixing compost and water for a defined period of time. The pig manure and spent mushroom compost were made by steeping compost in water. Compost tea was aerated from 24 hours and molasses and kelp were added as supplements. The four types of compost were tested growth of lettuce. EC of animal manure compost tea was higher than that of spent mushroom compost tea. Mineral nutrients were significantly higher in animal manure compost tea compared with spent mushroom compost tea. Compost tea contains nutrient and a ranges of different organisms. The beneficial fungi and actinomycetes were prominent in a spent mushroom compost tea. Compost tea from animal manure had the higher numbers of total bacteria. The actinomycetes densities were high in spent mushroom compost tea. But actinomycetes were not founded in animal manure compost tea. The growth characteristics of lettuce in animal manure compost tea were higher than those of spent mushroom compost tea. And also SPAD value in leaf was high in plot treated with animal manure compost tea. The fresh yield of lettuce in animal compost tea was higher by 181% that of control plot. The effect of compost tea on growth of lettuce was largely attributable to mineral nutrient.

A Study on the Livestock Resources regarding on the Discharging Characteristics from Farm Land (농지 주입 시 배출특성에 대한 축분자원화물 연구)

  • Lim, Jai-Myug;Lee, Young-Sin;Han, Gee-Bong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.91-102
    • /
    • 2009
  • In this study, to estimate the transforming (runoff and leachate) rate of the organic fertilizer made of livestock resources to farm land, laboratory scale test was conducted and the results were obtained as follows: The runoff volume from farm land showed the tendency of increase according to the increase of rainfall intensity. The most rainfall leachated into the underground at the rainfall intensity of 20mm/hr, and rainfall of 5L or less leachated at the rainfall intensity of > 32.4 mm/hr. This shows that surface runoff largely depends on the rainfall intensity when soil characteristic and hardness are similar in each site. When liquid compost was fertilized, the surface runoff was similar with the results from the reactor fertilized by compost, and leachate flow was found to be lower than compost. The runoff ratio of contaminant parameters from farm land were BOD 0.00003,, $COD_{cr}$ 0.00006, TN 0.00056, TP 0.00011, TOC 0.00005, Especially, the runoff ratio of TN showed 10 folds higher than other parameters. On the other hand, the runoff ratio of SS showed higher value of 0.001, and colloid particles of soil caused this result rather than the leachate from compost fertilizer. At all ranges of rainfall intensity, fertilizer removal ratio by farm land was found to be 94.9~98.4% for compost and 85.8~98.1% for liquid compost in terms of BOD. For TN, it resulted in 96.6~98.4% for compost and 97.2~98.5% for liquid compost, and thus the most fertilizer from livestock resources were shown to be reduced through farm land application.

  • PDF

Nutrient variations from swine manure to agricultural land

  • Won, Seunggun;You, Byung-Gu;Shim, Soomin;Ahmed, Naveed;Choi, Yoon-Seok;Ra, Changsix
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.763-772
    • /
    • 2018
  • Objective: Swine manure in Korea is separated into solid and liquid phases which are composted separately and then applied on land. The nutrient accumulation in soil has been a big issue in Korea but the basic investigation about nutrient input on arable land has not been achieved in detail. Within the nutrient production from livestock at the national level, most values are calculated by multiplication of the number of animals with the excreta unit per animal. However, the actual amount of nutrients from swine manure may be totally different with the nutrients applied to soil since livestock breeding systems are not the same with each country. Methods: This study investigated 15 farms producing solid compost and 14 farms producing liquid compost. Composting for solid phase used the Turning+Aeration (TA) or Turning (T) only methods, while liquid phase aeration composting was achieved by continuous (CA), intermittent (IA), or no aeration (NA). Three scenarios were constructed for investigating solid compost: i) farm investigation, ii) reference study, and iii) theoretical P changes (${\Delta}P=0$), whereas an experiment for water evaporation was conducted for analyzing liquid compost. Results: In farm investigation, weight loss rates of 62% and 63% were obtained for TA and T, respectively, while evaporation rates for liquid compost were 8.75, 7.27, and $5.14L/m^2{\cdot}d$ for CA, IA, and NA, respectively. Farm investigation provided with the combined nutrient load (solid+liquid) of VS, N, and P of 117.6, 7.2, and $2.7kg/head{\cdot}yr$. Nutrient load calculated from farm investigation is about two times higher than the calculated with reference documents. Conclusion: The nutrient loading coefficients from one swine (solid+liquid) were (volatile solids, 0.79; nitrogen, 0.53; phosphorus, 0.71) with nutrient loss of 21%, 47%, and 29%, respectively. The nutrient count from livestock manure using the excretion unit has probably been overestimated without consideration of the nutrient loss.

Evaluation of Mixed Treatment of Amino Acid Liquid Fertilizer and Compost Tea as a Substitute for Oil-cake in Organic Cultivation of Maize (옥수수 유기재배에서 유박 대체제로써 아미노산액비와 퇴비차의 혼합처리 평가)

  • Lee, Sung-Hee;Lee, Kyu-Hoi;Kim, Hyun-Ju;Lee, Sang Min;Kim, Ju-Hyoung
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.4
    • /
    • pp.453-461
    • /
    • 2019
  • The purpose of this study was to evaluate the mixed treatment of compost tea and amino acid liquid fertilizer as a substitute of oil cake for the organic cultivation of maize in Goesan, Chungbuk province. As a result, nitrogen, phosphoric acid, potassium, calcium and magnesium contents of each organic fertilizer were in the order of oil cake > amino acid fertilizer > compost tea. Each of these organic fertilizers had little influence on the change of soil chemical. Individual treatment of amino acid fertilizer and oil cake for weight of an ear as well as all individual treatments for the fresh weight of 100 kernels showed significant increase, compared to the untreated control. For the corn yield of merchantable quality, each treatment of compost tea, amino acid liquid fertilizer and oil cake increased higher 3.9, 5.4 and 5.9% than untreated control, respectively. On the other hand, as a result of mixed treatment of amino acid fertilizer and compost tea, the change of soil chemical property was insignificant. The mixed treatment, Nonetheless, showed significant increase for stem height to 1st ear, grain setting length in an ear, weight of an ear, and fresh weight of 100 kernels, compared to the oil cake as a control. After all, the corn yield of merchantable quality produced by the mixed treatment was 3.9% higher than the control. Therefore, our study would be considered that the mixed treatment of amino acid and compost tea is one of organic materials that can replace oil-cake in maize.

Effect of Liquid Pig Manure and Synthetic Fertilizer on Rice Growth, Yield, and Quality (벼 생육, 수량과 품질에 대한 돈분액비와 화학비료 시용 효과)

  • Kwon, Young-Rip;Kim, Ju;Ahn, Byung-Koo;Lee, Sang-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.54-60
    • /
    • 2010
  • We have researched the changes in nutrient content in each phase of fermentation in crops treated with liquefied pig fertilizer, and have determined the best method for applying livestock excrement to cultured crops. In the execution of this experiment, rice was cultivated to full maturity at a paddy field in Jeollabuk-Do Agriculture Research and Extension Services(Jeon-buk series) from 2007 to 2008. The rice plant nitrogen absorption quantity change, according to the growth stages of the cultivated rice, was 20.3% in the rice treated with the liquid pig manure and 22.2% the chemical fertilizer at highest congelation. The chemical fertilizer showed a higher absorption quantity than the liquid manure compost. The nitrogen density at highest congelation was 1.5% in the chemical fertilizer, and 1.8% in the pig manure liquid compost not a significant difference. The stem height at harvest time was 73.8 cm in the crops treated with the liquid pig manure compost. Those treated with the chemical fertilizer, yielded a height of 4.2 cm less than the crops treated with the liquid pig manure compost. The yield was 507 kg/10a in the liquid pig manure compost treated rice, compared with the chemical fertilizer, which showed a value of 1.2% lower. The protein content was 6.3% in the rice treated with the chemical fertilizer, but 6.4% in the rice treated with the liquid pig manure compost. This is not a significant difference. However, the lodging rice plant treated with the chemical fertilizer control showed a protein content of 6.8%, which was even higher than the normal rice. The head rice ratio in the brown rice and the polished rice ended up to be lower in the crop treated with the liquid pig manure than that treated with the chemical fertilizer, Quality, the palatability value, was similar in both groups. The above result indicate that, the effect of liquid pig manure compost corresponds to the effect of chemical fertilizer, when each are scattered uniformly.

A Study on the Estimation of Water Pollutants Reduction Ratio in Livestock Manure Fertilization (가축분뇨 자원화 처리시 수질오염물질 삭감율 산정 연구)

  • Oa, Seong Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.722-727
    • /
    • 2017
  • Livestock manure is known to be the main cause of non-point pollution in agricultural areas. The pollutant reduction ratio of livestock manure recycling to fertilizers was measured in order to analyze the effect on the water quality of the Total Maximum Daily Load (TMDL) system in Korea. The reduction ratio has been applied by theoretical consideration without a survey, and there is no value for Total Organic Carbon (TOC) newly introducing any organic items. The reduction ratio of each pollutant from this study was revealed as follows: TOC, BOD, T-N and T-P were 0.34, 0.60, 0.37, and 0.42 for individual farm and 0.38, 0.61, 0.45 and 0.44 for entrustment facilities, respectively. The reduction ratio of individual farm was surveyed as TOC 0.63, BOD 0.62, T-N 0.42 and T-P 0.32 for liquid fertilizer, and TOC 0.30, BOD 0.64, T-N 0.40 and T-P 0.48 for compost. The total reduction ratio was derived by multiplying the ratio for liquid fertilizer and compost by the respective load. Compared to the pollutant reduction ratio of the individual farm with entrustment facilities marking the higher in liquid fertilizer and the lower in compost. Through this study, we found the difference of pollutant reduction ratio between a livestock manure recycling process and facilities. Although phosphorus is known as a preservative matter, the treatment efficiency of T-P is analyzed to decrease by chemical precipitation.

Change in three dry rangeland species growth and soil properties by compost application

  • Sadeghi, Hossein;Shourije, Fatemeh Ansar;Masoudi, Masoud
    • Journal of Ecology and Environment
    • /
    • v.35 no.2
    • /
    • pp.131-140
    • /
    • 2012
  • There are different types of compost used as soil conditioners and fertilizers. Plants can have different responses to different forms of compost. This field study was performed to examine the effects of different types of compost on growth factors of three dry rangeland species (Atriplex, $Atriplex$ $lentiformis$; Saltwort, $Seidlitzia$ $rosmarinus$; Haloxylon, $Haloxylon$ $persicum$) and soil properties. The experiment was conducted in the Fars Province of Iran during the year 2010-2011. Compost applications consisted of compost tea, solid compost (SC), solid and liquid mixture (MX) and no compost as the control. The study was a factorial experiment based on a randomized complete block design with 3 replications. The results showed that all the tested compost applications enhanced the growth traits of all three species. It was also demonstrated that the use of compost significantly increased the organic matter (1% probability level [PL]), nitrogen concentration (5% PL), phosphorous (5% PL) and potassium (5% PL) concentrations of the soil. The soil's pH level was unchanged (range, 7.3 to 7.6), and the sodium concentration was also significantly decreased (1% PL) by the use of compost. The higher responses were observed in canopy volume and soil sodium and the lower were observed in stem diameter and soil pH level. Among the three plants in the study, Atriplex showed the best response to the application of compost. Based on the results of this study, it can be recommended that the best compost application to increase growth and improve soil condition is the mixed compost (MX) for Atriplex and the SC for Saltwort and Haloxylon.

effect of Cattle Compost and NPK Application on Growth and Dry Matter Accumulation of Selected Forage Crops on Neqly Reclaimed Uplands (신개간지에서 구비 및 삼요소시용이 청예사료작물의 생육 및 건물축적에 미치는 영향)

  • 한민수;박종선
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.11 no.2
    • /
    • pp.108-115
    • /
    • 1991
  • A field experiment was conducted to evaluate the effects of cattle compost application on the change of soil physical properties and their relationship to yield performance of selected main forage crops. Maize(CV. Suweon 19) and sorghum hybrids(CV. Pioneer 9'31) as a summer crops and winter rye were grown on newly reclaimed red yellow soils(Fine loamy, Typic Hapludults) under different application rate of cattle compost associated with chemical NPK fertilization, from Oct. 1986 to Sept. 1989. Experimental field was laid down as a split plots design with four replications. The results obtained are summarized as follows: 1. Cattle compost application reclaimed soil physical propeties, such as formation of granular structure and water holding capacity, and it result in a great increase of plant growth and the rate of dry matter accumulation. 2. While cattle compost treatment reduced the portion of soild phase of the three phase constituents of soils, it increased the portion of air phase and liquid phase comparatively. 3. Organic matter, N, P, K, and mineral content in soil were markedly increased in the plot treated with compost. 4. Cattle compost application increased fodder production both in maize-rye and sorghum hybrids-rye cultivation. Annual dry matter yield of maize-rye cropping was 2183(NI'K only), 2425(NPK+compvst 3000 kg) and 2800kg/lOa(NPK + compost 6000kg/10a).

  • PDF