• 제목/요약/키워드: Liquid bulk temperature

검색결과 103건 처리시간 0.032초

Measurement of temperature profile using the infrared thermal camera in turbulent stratified liquid flow for estimation of condensation heat transfer coefficients

  • Choi, Sung-Won;No, Hee-Cheon
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1999년도 춘계학술발표회요약집
    • /
    • pp.107-107
    • /
    • 1999
  • Direct-contact condensation experiments of atmospheric steam and steam/air mixture on subcooled water flowing co-currently in a rectangular channel are carried out uszng an infrared thermal camera system to develop a temperature measurement method. The inframetrics Model 760 Infrared Thermal Imaging Radiometer is used for the measurement of the temperature field of the water film for various flow conditions. The local heat transfer coefficient is calculated using the bulk temperature gradient along the (low direction. It is also found that the temperature profiles can be used to understand the interfacial condensation heat transfer characteristics according to the flow conditions such as noncondensable gas effects, inclination effect, and flow rates.

  • PDF

세라믹 에너지 재료 (Ceramics superconducting Energy Materials)

  • 이상헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1238-1239
    • /
    • 2008
  • The high Tc supeconductor of ceramic oxides type was studied for finding its application field. The results reportaed in this paper on the stability of the ceramic superconductors and the resistance to ripening in the BCO liquid phase at elevated temperature opens a processing window for engineering the microstructure of large superconductor at the nanoscale level. The results suggest further that the introduction of highly efficient artifical pinning center to bulk ceramics superconductor.

  • PDF

화물선의 결로 방지에 대한 연구 (A Study on the Condensation Prevention of Bulk Carrier)

  • 오세진;김원욱;김성환;이성근;김종수
    • 해양환경안전학회지
    • /
    • 제17권4호
    • /
    • pp.429-434
    • /
    • 2011
  • 선박에 적재된 곡류, 철강재 등의 산적화물에 여러 가지 이유로 손상이 발생될 수 있다. 본 논문에서는 코일 운반선의 화물손상 원인 중 특히, 결로에 의한 손상과 그에 대한 방지대책에 대해 분석하고자 한다. 결로란 주위 온도가 이슬점 이하로 떨어져 물체 표면에 공기 중의 수증기가 물방울로 맺히는 현상을 말하며 일반적으로 실내외 온도차가 큰 건축물이나 선박의 화물창에서 많이 발생한다. 특히, 비슷한 시기에 기온차가 있는 전 세계를 운항하는 선박에서 흔히 발생할 수 있는 현상이다. 본 연구에서는 코일 운반선의 결로에 의한 화물손상 방지 대책에 대해 고찰하고 화물손상을 방지하기 위해 제습장치와 가열온풍장치를 병용하는 새로운 방법의 제안과 습도, 습기량, 제습장치 용량, 결로수량, 화물 및 공기와 외기의 온도 차이에 따른 화물창 내 공기와 화물 가열에 필요한 열량, 가열장치 용량 등의 산정법을 제시한다.

다공성 매질에서 액화질소의 거동에 대한 연구 (STUDY ON BEHAVIOR OF LIQUID NITROGEN IN POROUS MEDIA)

  • 최성웅;이우일
    • 한국전산유체공학회지
    • /
    • 제18권2호
    • /
    • pp.17-25
    • /
    • 2013
  • The process of flow through porous media is of interest a wide range of engineering fields and areas, and the importance of fluid flow with a change in phase arises from the fact that many industrial processes rely on these phenomena for materials process, energy transfer. Especially, the flow phenomena of cryogenic liquid subjected to evaporation is of interest to investigate how the cryogenic liquid behaves in the porous structure. In this study, thermo physical properties, morphological properties of the glass wool with different bulk densities in terms of its temperature-dependence and permeability behaviors under different applying pressure are discussed. Using the experimentally determined properties, characteristics of two main experimental results are investigated. In addition, simulation results are used to realize the cryogenic liquid's flow in porous media, and are compared with experimental results. By using the experimentally determined properties, more reasonable results can be suggested in dealing with porous media flow.

Nanostructured Bulk Ceramics (Part I)

  • Han, Young-Hwan;Mukherjee, Amiya K.
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.225-228
    • /
    • 2009
  • The processing and characterization of ceramic nanocomposites, which produce bulk nanostructures with attractive mechanical properties, have been emphasized and introduced at Prof. Mukherjee's Lab at UC Davis. The following subjects will be introduced in detail in Part II, III, and IV. In Part II, the paper will describe a three-phase alumina-based nanoceramic composite demonstrating superplasticity at a surprisingly lower temperature and higher strain rate. The next part will show that an alumina-carbon nanotube-niobium nanocomposite produced fracture toughness values that are three times higher than that of pure nanocrystalline alumina. It was possible to take advantage of both fiber-toughening and ductile-metal toughening in this investigation. In the fourth section, discussed will be a silicon-nitride/silicon-carbide nanocomposite, produced by pyrolysis of liquid polymer precursors, demonstrating one of the lowest creep rates reported so far in ceramics at the comparable temperature of $1400^{\circ}C$. This was first achieved by avoiding the oxynitride glass phase at the intergrain boundaries. One important factor in the processing of these nanocomposites was the use of the electrical field assisted sintering method. This allowed the sintering to be completed at significantly lower temperatures and during much shorter times. These improvements in mechanical properties will be discussed in the context of the results from the microstructural investigations.

파라핀 슬러리의 생성 및 관내 대류열전달에 관한 연구 (Formation of a paraffin slurry and its convective heat transfer in a circular pipe)

  • 최은수
    • 대한기계학회논문집B
    • /
    • 제22권1호
    • /
    • pp.50-60
    • /
    • 1998
  • As a method to develop an enhanced heat transfer fluid, the fine particles of a phase-change material were mixed with a conventional heat transfer fluid. Paraffin, which can be obtained easily in domestic market, was used for the phase-change material and water was used as a carrier fluid. Fine liquid particles of paraffin were formed in water as an emulsion by using an emulsifier, and they were cooled rapidly to become solid particle, resulting in paraffin slurry. The average diameter of produced solid particles was inversely proportional to the amount of the added emulsifier, which was theoretically proved. The produced paraffin slurry was tested thermally in heat transfer test section having a constant-heat-flux boundary condition. The test section was made of a circular stainless-steel pipe, which was directly heated by the power supply having a maximum of 50 Volts-500 Amperes. DSC(Differential scanning calorimeter) tests showed that two kinds of phase change were involved in the melting of paraffin, and it was explained in two different ways. A five- region-melting model was developed by extending the conventional three-region-melting model, and was used to obtain the local bulk mean temperatures of paraffin slurry in the heating test section. The local heat transfer coefficient showed a maximum where the bulk mean temperature of the paraffin slurry reached at the melting temperature of paraffin.

II-VI 화합반도체소자의 열화현상 (The decay phenomenon of II-VI compound semiconductors)

  • 성영권
    • 전기의세계
    • /
    • 제17권2호
    • /
    • pp.16-26
    • /
    • 1968
  • Cds is possible to add excess donors and to compensate partially using other group metals as acceptors. The impurities can ble incorporated either during crysta growth or by diffusion into a bulkcrystal. The addition of rimpurities leads also to the production of vacancies in a manner depending on the atmosphere surrounding the crystal during growth, during the diffusion process or using bulk. Cds of the mentioned above affects spectral sensitivity, speed of response, the variation on photocurrent, electron life time, and decay of photoconductivity with temperature and with intensity of illumination. In the work to be deseribed, these properties have been studied between liquid nitrogen and room temperature. In addition, the electron trap distribution has been correlated with speed of response, variation of photocurrent with temperature in various atmosphere. Four major trapping levels have been observed, and their identification with impurity and vacancy levels is discussed. And also the effects of lattice imperfections on the photoconductive properties CdS were investigated in detail.

  • PDF

아몰퍼스 고온 판재성형시 스프링백 (Spring Back in Amorphous Sheet Forming at High Temperature)

  • 이용신
    • 소성∙가공
    • /
    • 제14권9호통권81호
    • /
    • pp.751-755
    • /
    • 2005
  • This paper is concerned with spring back after sheet forming of bulk amorphous alloys in the super cooled liquid state. The temperature-dependence and strain-rate dependence of Newtonian/non-Newtonian viscosities as well as the stress overshoot/undershoot behavior of amorphous alloys are reflected in the thermo-mechanical Finite Element simulations. Hemispherical deep drawing operations are simulated for various forming conditions such as punch velocity, die comer radius, friction, blank holder force, clearance and initial funning temperature. Here, spring back by an instantaneous elastic unloading was followed by thermal deformation during cooling, and two modes of spring back are examined in detail. It could be concluded that the superior sheet formability of an amorphous alloy can be obtained by taking the proper forming conditions for loading/unloading.

증기급속응축법 제조 귀금속 나노분말의 결정학적 특성 연구 (Characterization of Crystal Structure for Nanosized Noble Metal Particles Fabricated by ERC(Evaporation and Rapid Condensation) Method)

  • 유연태
    • 한국재료학회지
    • /
    • 제13권5호
    • /
    • pp.285-291
    • /
    • 2003
  • The nanosized silver and gold particles are prepared by ERC method in which metal vapors with high temperature is rapidly quenched by coolants such as liquid nitrogen or liquid argon. In order to monitor the crystal structural changes on the internal and the surface of the nanosized noble metal particles, lattice parameter, internal strain and Debye-Waller factor are investigated, and the calculation of X-ray diffraction scattering intensity is performed. The lattice parameters of silver and gold particles agree with those of bulk materials, and crystal internal strain of the metal particles is not changed by rapid cooling. The Debye-Waller factor of gold particles is increased with decreasing particle size because of the surface softening phenomenon of nanosized particles, but the crystal structural change on the surface of the particles is not detected from the comparison the calculated X-ray diffraction profile with the experimental profile on gold particles with the particle size of 4 nm.

Phase behaviors, lamellar structures, and physical properties of synthetic vitamin E ceramide (Tocomide) mixed with cholesterol and linoleic acid

  • Lee, Young-Jin;Kim, Do-Hoon;Park, Ho-Sik;Kang, Hyung-Seok;Kim, Joong-Soo;Kim, Han-Kon
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book II
    • /
    • pp.357-368
    • /
    • 2003
  • II-A isotherms and phase behaviors of 'tocomide', a newly synthesized 1,3-bis(N-(2-hydroxyethyl)-tocopherol succinylamino)-2-hydroxypropane, mixed with cholesterol and linoleic acid, was studied for its monolayer miscibility and a stable delivery formulation for antioxidant applications. The monolayer of tocomide and cholesterol was formed in a homogeneously mixed state at air-water interface. The ternary mixtures with linoleic acid showed various bulk structures, including a stable and transparent solution of thermodynamically stable lamellar phase. The lamellar structure was confirmed by the X-ray diffraction (XRD) patterns and polarized microscopy such that pure tocomide formed a liquid crystal at room temperature with a lamellar periodicity of 36.7 $\AA$(2$\theta$=2.41$^{\circ}$).

  • PDF