• 제목/요약/키워드: Liquid ambient

검색결과 283건 처리시간 0.024초

제대혈 용기 내부 로봇 암의 열해석에 관한 연구 (A Study on the Thermal Analysis for the Robotic Arm of the Cord Blood Storage Tank)

  • 윤상국;유삼상
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권5호
    • /
    • pp.724-729
    • /
    • 2008
  • Umbilical cord blood has been recently considered an attractive potential alternative as a source of stem cell transplantation to curing diseases such as leukemia, cancers, immune disorders. Normally the stored system of the umbilical cord blood specimen is equipped with a computer-controlled robotic arm that enables the samples to locate the identification places in liquid nitrogen tank at regulated temperature as about $-196^{\circ}C$. As the half of robotic arm is in the air and the rest part is submerged in liquid nitrogen, the temperature of robotic arm varies from ambient to liquid nitrogen temperature. In this study the temperature variation of upper part of arm above tank lid was thermally analysed by using the commercial code of Ansys. The result of analysis was that the upper part of robotic arm was seriously frozen due to heat transfer from liquid nitrogen as low as -$120^{\circ}C$. In order to solve the frost problem of robotic arm, small PTFE tube block as resistance material was introduced into the lower part of tank lid instead of the whole stainless steel(SUS) robotic arm. The results showed that the temperature of robotic arm above the lid was higher enough, and this method would be one of the very effective measure to solve the problem.

Off-cycle에서 Euro 6a, 6b 및 6d 규제 만족 디젤 자동차의 NOx 배출 특성 (NOx Emission Characteristics of Diesel Passenger Cars Met Euro 6a, 6b and 6d Regulations on Off-cycles)

  • 김정환;김성우;김기호
    • 한국분무공학회지
    • /
    • 제23권3호
    • /
    • pp.136-148
    • /
    • 2018
  • Major countries have tighten their NOx regulation of diesel passenger cars. In the case of the EU, the regulation has been toughen up to 6.25 times since 2000. Despite the regulation the NOx concentration of the ambient has not been reduced proportionally. As these issues, to reduce NOx emission practically, Korea and the EU introduced the real-world driving emission (RDE) regulation and the test method that will be applied after 2017. In this paper, for the regulation to make a soft landing in Korea, 6 diesel passenger cars which met Euro 6a~6d regulation and were equipped with LNT/SCR were tested at a chassis dynamometer with environmental chamber applying the off-cycles (FTP, US06, SC03, HWFET and CADC) and several ambient conditions (-7 and $14^{\circ}C$) as well as certification modes (NEDC, WLTC@ $23^{\circ}C$). The result of the test showed that the ambient temp. and the engine load as a test mode impacted the NOx emission of the cars while the vehicles with SCR emitted NOx lower than with LNT. Additionally, to propose an effective RDE test method, the above result was compared with the results of the other papers which tested RDE using the same cars.

주변공기조건이 충돌수분류에 의한 고온강판의 냉각에 미치는 영향 연구 (The Effect of Ambient Air Condition on a Hot Steel Plate Cooled by Impinging Water Jet)

  • 이필종;최해원;이승홍
    • 대한기계학회논문집B
    • /
    • 제24권1호
    • /
    • pp.29-38
    • /
    • 2000
  • It is observed that the cooling capacity of impinging water jet is affected by the seasonal conditions in steel manufacturing process with large scale. To confirm this phenomena, the cooling experiments of a hot steel plate by a laminar jet were conducted for two different initial ambient air temperature($10^{\circ}C$ and $40^{\circ}C$) in a closed chamber, and an inverse heat conduction method is applied for the quantitative comparison. It is found that the cooling capacity under $10^{\circ}C$ air temperature is lower than that under $40^{\circ}C$, as is the saturated water vapor is more easily observed, and the amount of total extracted heat in the case of $10^{\circ}C$ is smaller by nearly 15% than that of $40^{\circ}C$ case. From these results, it is thought that the quantity of water vapor, which could be absorbed until saturation, effects on the mechanism of boiling heat transfer.

강한 압력 교란에 구속된 고압 액적의 천이 기화 (Droplet Vaporization in High Pressure Environments with Pressure Oscillations)

  • 김성엽;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.157-163
    • /
    • 2003
  • A systematic numerical experiment has been conducted to study droplet gasification in high pressure environments with pressure oscillations. The general frame of previous rigorous model[1] is retained but tailored for flash equilibrium calculation of vapor-liquid interfacial thermodynamics. Time-dependent conservation equations of mass, momentum, energy, and species concentrations are formulated in axisymmetric coordinate system for both the droplet interior and ambient gases. In addition, a unified property evaluation scheme based on the fundamental equation of state and empirical methods are used to find fluid thermophysical properties over the entire thermodynamic domain of interest. The governing equations with appropriate physical boundary conditions are numerically time integrated using an implicit finite-difference method with a dual time-stepping technique. A series of calculation have been carried out to investigate the gasification of an isolated n-pentane droplet in a nitrogen gas environment over a wide range of ambient pressures and frequencies. Results show that the mean pressures and frequencies of the ambient gas have strong influences on the characteristics of the droplet gasification. The amplitude of the response increases with increasing pressure, and the magnitude of the vaporization response increases with the frequency.

  • PDF

분위기 조건이 직접분사식 인젝터의 미립화에 미치는 영향 (Effects of Ambient Conditions on the Atomization of Direct Injection Injector)

  • 이중순
    • 한국분무공학회지
    • /
    • 제6권1호
    • /
    • pp.25-34
    • /
    • 2001
  • Several efforts to meet the exhaust gas regulation have been undertaken by many researchers in recent years. Main researches are on development of design techniques of intake port and combustion chamber, atomisation of fuel and precise control of air-fuel ratio, post-treatment of exhaust gas and so on. Engine technology is changed from PFI to GDI to correspond with exhaust gas regulation. GDI technique makes it possible to preserve lean air-fuel ratio and control accurate air-fuel ratio. Nevertheless, It is not cleared that information of spray characteristics and atomization process are very dependent on fluctuation of pressure and change of temperature in intake stroke. In this study, a constant volume combustion chamber is manufactured to investigate various fluctuations of in-cylinder pressure for injection duration. It is taken photographs of injection process of conventional GDI injector using PMAS. Then, it was verified experimently that ambient conditions as temperature and pressure of combustion chamber have effects on process of spray growth and atomization of fuel.

  • PDF

주변난류유동이 단일액적의 증발에 미치는 영향에 대한 수치적 연구 (Numerical Study for Ambient Turbulence Effects on a Single Droplet Vaporization)

  • 박정규
    • 대한기계학회논문집
    • /
    • 제19권10호
    • /
    • pp.2699-2709
    • /
    • 1995
  • This investigation reports on the study of the ambient turbulent effects on the droplet vaporization in the fuel spray combustion. For tractability, this discussion considers a single droplet in an infinite turbulent flow. In this numerical study, the low-Reynolds-number version of k-.epsilon. turbulence model was used to represent the turbulence effects. The set of two-dimensional conservation equations which describe the transport phenomena in turbulent flow using the mean flow quantities including the droplet internal laminar motion, are solved numerically with the finite difference procedure of Patankar(SIMPLER). The evaluation of the computational model is provided by two limiting cases: turbulent flow over the solid sphere and the laminar flow over a liquid drop. The results show that the turbulence effects are noticeable for the vaporization at high turbulence intensity (10-50%) which is encountered in a typical spray. The magnitude of turbulence effects mainly depends on the turbulent intensity. These effects are not sensitive to the Reynolds number in the range of 50 to 200, ambient temperature in the range of 700 to 1000.deg. K and the volatility.

Hg 분위기 열처리에 따른 적외선 감지용 Hg0.7Cd0.3Te 박막의구조적 특성 변화 (Effect of Hg-ambient annealing on Hg0.7Cd0.3Te thin films for IR detector)

  • 김광천;이차헌;최원철;김현재;김진상
    • 센서학회지
    • /
    • 제19권5호
    • /
    • pp.398-402
    • /
    • 2010
  • The liquid phase epitaxy(LPE) method was widely used to growth of mercury cadmium telluride(MCT) thin films. However, this method lead to Hg-vacancies in MCT thin film, because Hg has high vapor pressure at this temperature range. This is a well known defect in HgCdTe grown by LPE method. In this study, we report the development of techniques for improving the crystalline quality and controlling the composite uniformity of HgCdTe thin films using high- pressure Hg-ambient annealing method. As a result, we achieved the improvement of the composite uniformity of HgCdTe thin films. It was observed by the high angle annular dark field scanning TEM(HAADF-STEM) analysis. Moreover, new HgTe phase and a shrinking of lattice fringe were observed.

액화가스용 대기식 기화기의 외측 열전달 특성에 관한 연구 (A Study on Heat Transfer Characteristics of the Outside Surface of Ambient Vaporizer)

  • 강승모;서동민;고동국;최준호;박외철;임익태
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.5-10
    • /
    • 2017
  • This paper analyzed the heat transfer characteristics on the outer surface of the ambient air vaporizer which received the heat from the air through natural convection by using numerical and experimental methods. The working fluid was a liquid nitrogen. The experimental variables were the length (2,000 mm, 1,800 mm, 1,600 mm) and width of the vaporizer fin and the fluid flow ($6.7m^3/h$, $7.1m^3/h$, $7.5m^3/h$). Based on the temperature data from the experiments, the heat transfer coefficient was calculated. Numerical analyses were also conducted in order to find the heat transfer coefficient for the range of Nusselt number which was difficult to get the data from experiments. The correlation equation between Nusselt number and Rayleigh number were suggested using both the experimental and numerical data.

  • PDF

Fin and Temperature Effect of Frost in Ambient Air Vaporizer

  • Lee, Seong-Woo;Choi, Sung-Woong
    • 한국해양공학회지
    • /
    • 제36권4호
    • /
    • pp.211-216
    • /
    • 2022
  • Since liquefied natural gas (LNG) is imported in a liquid state of about -162℃ to increase transportation efficiency in Korea, it must be vaporized in a gaseous state to supply it to consumers. Among them, ambient air vaporizer (AAV) has caught attention due to eco-friendly and low costs characteristics. However, there is a disadvantage that the performance of the heat exchanger is deteriorated due to frost due to mist and icing when used for a long time. In this paper, frost generation model in AAV vaporizer was investigated with numerically to examine utilizing the vaporizer performance with the frost generation behavior. The frost generation behavior of AAV vaporizers was examined with humidity, fin characteristic, and temperature effects. As for the LNG discharge temperature, the 12 fin vaporizer showed the highest discharge temperature when the atmospheric temperature was 25℃, and the 8 fin vaporizer had the lowest LNG discharge temperature when the atmospheric temperature was 0℃. In the case of frost formation, in the case of the 12 fin vaporizer, it was formed the most at the atmospheric temperature of 25℃, and the least was formed in the vaporizer at the 0℃ condition of the atmospheric temperature of 8 fins.

가솔린 직분식 엔진 인젝터의 연료 분무 미립화 특성 (Atomization Characteristics of Fuel Spray in Fuel Injector in Gasoline Direct-Injection Engine)

  • 이창식;이기형;최수천;권상일
    • 한국분무공학회지
    • /
    • 제4권2호
    • /
    • pp.33-39
    • /
    • 1999
  • This paper presents the spray atomization characteristics of the high-pressure gasoline injector for the direct-injection gasoline engine. The gasoline sprays of the injector were minted into a pressurized spray chamber with a optical access at various ambient pressures. The atomization characteristics of fuel spray such as mean diameter, mean velocity of droplet were measured by the phase Doppler particle analyzer system. In order to investigate the effect of fuel injection pressure on the quantitative characteristics of spray, the global visualization and experiment of particle measurement in the fuel spray were investigated at 3, 5 and 7 MPa of injection pressure under different ambient pressure in the spray chamber. Based on the results of this work, the fuel injection pressure of fuel injector in gasoline direct-injection engine have influence upon distribution of the mean velocity and droplet size of fuel spray. Also, the influence of injection pressure on the velocity distribution at various measuring location were investigated.

  • PDF