• Title/Summary/Keyword: Liquid Transient

Search Result 394, Processing Time 0.024 seconds

Valve actuation effects on discrete monopropellant slug delivery in a micro-scale fuel injection system

  • McDevitt, M. Ryan;Hitt, Darren L.
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.4
    • /
    • pp.409-425
    • /
    • 2014
  • Converging flows of a gas and a liquid at a microchannel cross junction, under proper conditions, can result in the formation of periodic, dispersed microslugs. This microslug formation phenomenon has been proposed as the basis for a fuel injection system in a novel, 'discrete' monopropellant microthruster designed for use in next-generation miniaturized satellites. Previous experimental studies demonstrated the ability to generate fuel slugs with characteristics commensurate with the intended application during steady-state operation. In this work, numerical and experimental techniques are used to study the effect of valve actuation on slug characteristics, and the results are used to compare with equivalent steady-state slugs. Computational simulations of a valve with a 1 ms valve-actuation cycle show that as the ratio of the response time of the valve to the fully open time is increased, transient effects can increase slug length by up to 17%. The simulations also demonstrate that the effect of the valve is largely independent of surface tension coefficient, which is the thermophysical parameter most responsible for slug formation characteristics. Flow visualization experiments performed using a miniature valve with a 20 ms response time showed less than a 1% change in the length of slugs formed during the actuation cycle. The results of this study indicate that impulse bit and thrust calculations can discount transient effects for slower valves, but as valve technology improves transient effects may become more significant.

Paleohydrologic Activity and Environmental Change on Mars (화성에서의 고수문학적 활동과 환경변화)

  • Dohm, James M.;Kim, Kyeong-Ja
    • The Korean Journal of Quaternary Research
    • /
    • v.23 no.1
    • /
    • pp.38-41
    • /
    • 2009
  • Results from the most recent decade of Mars' missions to Mars highlight a liquid water and water-ice sculpted landscape. Evidence includes layered sedimentary sequences with weathered outcrops, debris flows, fluvial valleys, alluvial fans, deltas, glacial and periglacial landscapes, and geochemical/mineralogical signatures of aqueous activity, including the formation of sulfates and clays, and the leaching and deposition of elements such as potassium, thorium,and iron. Such evidence indicates weathered zones and possible paleosols in stratigraphic sequences, transport of water and rock materials to sedimentary basins, and the possible formation of extensive transient lakes and possibly transient oceans on Mars. This new evidence is consistent with Viking-era geologic investigations that reported magmatic-driven flooding, ponding to form large water bodies in the northern plains, and transient (tens of thousand of years) hydrological cycles. It may even indicate aqueous activity at present. Both endogenic (magmatic driven) and exogenic (both impact cratering and changes in orbital parameters) have influenced paleohydrologic and environmental change on Mars. Abundance of water and dynamic activity would be decisively important for the possibility of past and present life on Mars.

  • PDF

Development and validation of the lead-bismuth cooled reactor system code based on a fully implicit homogeneous flow model

  • Ge Li;Wang Jingxin;Fan Kun;Zhang Jie;Shan Jianqiang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1213-1224
    • /
    • 2024
  • The liquid lead-bismuth cooled fast reactor has been in a single-phase, low-pressure, and high-temperature state for a long time during operation. Considering the requirement of calculation efficiency for long-term transient accident calculation, based on a homogeneous hydrodynamic model, one-dimensional heat conduction model, coolant flow and heat transfer model, neutron kinetics model, coolant and material properties model, this study used the fully implicit difference scheme algorithm of the convection-diffusion term to solve the basic conservation equation, to develop the transient analysis program NUSOL-LMR 2.0 for the lead-bismuth fast reactor system. The steady-state and typical design basis accidents (including reactivity introduction, loss of flow caused by main pump idling, excessive cooling, and plant power outage accidents) for the ABR have been analyzed. The results are compared with the international system analysis software ATHENA. The results indicate that the developed program can stably, accurately, and efficiently predict the transient accident response and safety characteristics of the lead-bismuth fast reactor system.

Simultaneous determination of reference free-stream temperature and convective heat transfer coefficients (자유흐름온도와 대류열전달계수를 동시에 측정할 수 있는 실험 방법에 대한 연구)

  • Jeong, Gi-Ho;Song, Ki-Bum;Kim, Kui-Soon
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.419-424
    • /
    • 2001
  • This paper deals with the development of a new method that can obtain heat transfer coefficient and reference tree stream temperature simultaneously. The method is based on transient heat transfer experiments using two narrow-band TLCs. The method is validated through error analysis in terms of the random uncertainties in the measured temperatures. It is shown how the uncertainties in heat transfer coefficient and tree stream temperature can be reduced. The general method described in this paper is applicable to many heat transfer models with unknown free stream temperature.

  • PDF

Viscosity Measurement of Non-Newtonian Fluids Using the Transient Flow Phenomena in the Capillary Tube (모세관내 과도유동현상을 이용한 비뉴턴유체의 점도측정)

  • Cho, Min-Tae;Suh, Sang-Ho;Yoo, Sang-Sin
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.738-741
    • /
    • 2001
  • The purpose of the present study is to measure the viscosity of liquid in the capillary tube viscometer using the unsteady flow concept. The capillary tube viscometer is consisted of a small cylindrical reservoir, capillary tubes, and the mass flow rate measuring system interfaced with computer. Two capillary tubes with 1.152 and 3.002 mm I.D. are used to determine the diameter effects on the viscosity measurements. The instantaneous shear rate and gravitational driving force in the capillary tube are determined by measuring the mass flow rate through the capillary tube instantaneously. The measured viscosities of water and aqueous Separan solution are in good agreement with the reported experimental data.

  • PDF

Effect of Opening Pressure and Ambient Pressure on the Characteristics of Atomization in Early Stage of Diesel Spray (개변압 및 배압 변화가 디젤부문의 초기 미립화 특성에 미치는 영향)

  • 김종현;이봉수;이장희;구자예
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.56-62
    • /
    • 1999
  • The disintegration of transient diesel spray in early was investigated at different opening pressure and chamber pressure by measns of shadowgraph method using nanolite and still camera. Diesel spary was injected into the spray chamber which was charged with high pressure nitrogen gas. Atthe begining of injection, a liquid column that was almost the same diameter as the nozzle hole was observed . Spray tip penetration and spray angle were always increased with an increase in opening pressure.

  • PDF

Transient Breakup Phenomena of Initial Spray from High-Pressure Swirl Injector (와류형 고압인젝터의 초기분무의 분열 과도현상)

  • Choi, Dong-Seok;Kim, Duck-Jool;Ko, Chang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.8
    • /
    • pp.1132-1140
    • /
    • 1998
  • The disintegration process of initial spray from high-pressure swirl injector was investigated at different injection pressures. The transient breakup phenomena that were difficult to observe at high injection pressure were easily observed at the low injection pressure of 0.4MPa. The effect of fuel remained inside a nozzle hole volume on the penetration of initial spray was also investigated. The disintegration process of initial spray could be classified four regions: the formation of mushroom shape, the first collision, the second collision, and the development of spray, The liquid film of cup shape was particularly found in the second collision region, and the growth ratio of its length and width at low and high injection pressures were compared.

Characteristic of Power Consumption in Agitated Vessel Using Wire Gauge Impeller (금망임펠러를 이용한 교반조에서의 교반소요동력 특성)

  • Kim, Moon-Gab;Lee, Young-Sei
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.2
    • /
    • pp.73-78
    • /
    • 2011
  • Power consumption for wire gauge impeller in cylindrical agitated vessel was measured over a wide range of Reynolds number from laminar to turbulent flow regions. The power correlation were obtained agitation power input of WM4 at gassing condition in turbulent region, at gassing condition in transient region and at gassing condition in laminar region. Also the compared with effect of impeller diameter and blade width on agitation power input at gassing condition in turbulent region, at gassing condition in transient region and at gassing condition in laminar region.

Unsteady Flamelet Modeling of Turbulent Nonpremixed Flames (비정상 층류화염편 모델을 이용한 비예혼합 난류화염 해석)

  • Kim, Seong-Ku;Kang, Sung-Mo;Seo, Bo-Sun;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.6 no.3
    • /
    • pp.8-16
    • /
    • 2001
  • The present study is focused on modeling the transient behavior of the local flame structure which is especially important for slow reaction processes, such as NOx formation in the radiating flame field. The unsteady flamelet model recently developed has been applied to analyze a steady, turbulent jet flame. Numerical results are compared with experimental data and numerical results of the conventional steady flamelet model. The numerical result reveals that the unsteady flamelet model correctly predicts the nonequilibrium effect upsteam and the subsequent decay of the superequilibrium radical concentrations further downstream.

  • PDF

Influence of Droplet Drag Models on Diesel Spray Characteristics under Ultra-High Injection Pressure Conditions (극초고압 조건에서 디젤 분무 특성에 미치는 액적 항력 모델의 영향)

  • Ko, Gwon-Hyun;Lee, Seong-Hyuk;Lee, Jong-Tai;Ryou, Hong-Sun
    • Journal of ILASS-Korea
    • /
    • v.9 no.3
    • /
    • pp.42-49
    • /
    • 2004
  • The present article investigates the influence of droplet drag models on predictions of diesel spray behaviors under ultra-high injection pressure conditions. To consider drop deformation and shock disturbance, this study introduces a new hybrid model in predicting drag coefficient from the literature findings. Numerical simulations are first conducted on transient behaviors of single droplet to compare the hybrid model with earlier conventional model. Moreover, using two different models, extensive numerical calculations are made for diesel sprays under ultra-high pressure sprays. It is found that the droplet drag models play an important role in determining the transient behaviors of sprays such as spray tip velocity and penetration lengths. Numerical results indicate that this new hybrid model yields the much better conformity with measurements especially under the ultra-high injection pressure conditions.

  • PDF