• Title/Summary/Keyword: Liquid Rocket Injector

Search Result 203, Processing Time 0.028 seconds

Numerical Analysis on the Discharge Characteristics of a Liquid Rocket Engine Injector Orifice

  • Cho, Won-Kook;Kim, Young-Mog
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • A numerical analysis was performed on the fluid flow in injector orifice of a liquid rocket engine. The present computational code was verified against the published data for turbulent flow in a pipe with a sudden expansion-contraction. Considered were the parameters for the flow analysis in an injector orifice: Reynolds number, ratio of mass flow rate of the injector orifice and inlet flow rate, and slant angle of the injector orifice. The discharge coefficient increased slightly as the Reynolds number increased. The slant angle of the injector changed critically the discharge coefficient. The discharge coefficient increased by 7% when the slant angle changed from $-30^{\circ}$ to $30^{\circ}$ The ratio of mass flow rate had relatively little impact on the discharge coefficient.

Experimental Study of the Role of Gas-Liquid Scheme Injector as an Acoustic Resonator in a Combustion Chamber

  • Kim Hak-Soon;Sohn Chae-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.896-904
    • /
    • 2006
  • In a liquid rocket engine, the role of gas-liquid scheme injector as an acoustic resonator or absorber is studied experimentally for combustion stability by adopting linear acoustic test. The acoustic-pressure signals or responses from the chamber are monitored by acoustic amplitude. Acoustic behavior in a rocket combustor with a single injector is investigated and the acoustic-damping effect of the injector is evaluated for cold condition by the quantitative parameter of damping factor as a function of injector length. From the experimental data, it is found that the injector can play a significant role in acoustic damping when it is tuned finely. The optimum tuning-length of the injector to maximize the damping capacity is near half of a full wavelength of the first longitudinal overtone mode traveling in the injector with the acoustic frequency intended for damping in the chamber. When the injector has large diameter, the phenomenon of the mode split is observed near the optimum injector length and thereby, the acoustic-damping effect of the tuned injectors can be degraded.

A Study on Dynamic Characteristics of Gas Centered Swirl Coaxial Injector Varying Tangential Inlet Diameter with Liquid Pulsation (기체 중심 동축형 분사기의 접선방향 유입구 지름 변화에 따른 액체 가진 연구)

  • Oh, Sukil;Park, Gujeong;Kim, Seongju;Lee, Hyeongwon;Yoon, Youngbin;Choi, Jeong-Yeol
    • Journal of ILASS-Korea
    • /
    • v.22 no.2
    • /
    • pp.62-68
    • /
    • 2017
  • It is important to study on the combustion instability to develop liquid rocket engines for preventing lower combustion efficiency and destruction of combustion chamber. There are many researches on simplex injector with liquid pulsation to solve this problem. In real rocket engine system, however, they use coaxial injectors. Therefore, research on coaxial injector with liquid pulsation is essential. In this study, we investigate dynamic characteristics of gas centered swirl coaxial injector varying tangential inlet diameter. A mechanical pulsator was used to generate an excitation in the liquid flow, and the response characteristics of the injector were confirmed. As tangential inlet diameter increased, mass flow rates increased and spray angle decreased. As tangential inlet diamter decreased, gain decreased because the pressure fluctuation in the injector manifold rarely passed through the inlet. Additionally, it was confirmed that a sufficiently small tangential inlet served as a damper.

Flow Characteristics of Cryogenic Oxidizer in Liquid Propellant Rocket Engine (액체로켓 엔진에서의 극저온 산화제의 유동 특성)

  • 조남경;정용갑;문일윤;한영민;이수용;정상권
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.4
    • /
    • pp.15-23
    • /
    • 2002
  • In most cryogenic liquid rocket engines, liquid oxygen manifold and injector are not thermally insulated from room temperature environment fur reducing system complexity and the weight. This feature of cryogenic liquid rocket engine results in the situation that cryogenic liquid oxygen flow is easy to be vaporized especially in the vicinity of the manifold and the injector wall. The research in this paper is focused on two-phase flow phenomena of liquid oxygen in rocket engine. Vapor fraction was estimated by comparing the measured two-phase flow pressure drop in engine manifold and the injector with ideal single phase pressure drop. Heat flux into cryogenic flow is estimated by measuring the wall temperature on the engine manifold to examine boiling characteristics. Suitable correlations for cryogenic two-phase flow were also reviewed to see their applicability. In addition, the effect of vapor generation in liquid rocket engine manifold and injector on engine performance and stability was considered.

Analysis of Pintle Tip Thermal Damage in the Combustion Hot Firing Test with a 1.5-tonf Class Liquid-Liquid Pintle Injector (1.5톤급 액체-액체 핀틀 분사기 연소시험에서의 핀틀 팁 열손상 원인 분석)

  • Kang, Donghyuk;Hwang, Dokeun;Ryu, Chulsung;Ko, Youngsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.1-9
    • /
    • 2020
  • Using kerosene and liquid oxygen, 1.5-tonf class liquid-liquid pintle injector with rectangular two-row orifice was designed and manufactured. The combustion test of the pintle injector was carried out to verify the combustion performance and combustion stability under a supercritical condition which is the actual operation condition of the liquid rocket engine. The combustion test result showed that the pintle tip was damaged by the high temperature combustion gas in the high-mixed ratio recirculation zone of the combustion chamber. To solve this problem, the insert nozzle was installed in the pintle injector to increase cooling performance at the pintle tip. As a result of the hot firing test, installation of the insert nozzle, AR and BF had a great effect on pintle tip cooling performance.

Characteristics of Unielement Injector Combustion with Flow rates and Chamber Pressures (유량 및 연소압에 따른 액체로켓 단위분사기 연소특성 변화)

  • Moon Il-Yoon;Kim Jong-Gyu;Han Yeoung-Min;Yoo Jin;Lee Yang-Seok;Ko Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.247-250
    • /
    • 2005
  • In the case of appling a unielement injector developed for a full scale liquid rocket combustor, a operating condition or configuration of the injector is changed by combustion pressure, arrangement and injector quantity of a full scale liquid rocket combustor. In order to verify application, swirl coaxial injectors propelled by jet-A1 and liquid oxygen are tested at different conditions of a combustion pressure, a flowrate and an injector length. As a test result, the application of the present swirl coaxial injectors is excellent because an efficiency of a characteristic velocity is increased at the each test condition beyond that variation of dynamic pressure intensity is small.

  • PDF

Injector Head Design of 170tonf UDMH-LOX Liquid Rocket Engine (추력 170톤급 UDMH-LOX 계열 액체로켓엔진의 인젝터 헤드 설계)

  • Lim, Seok-Hee;Gostsev, V.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.207-210
    • /
    • 2006
  • Injector is one of the most important elements in Liquid rocket Engine design, and how to arrange these injectors on the head determines the engine performance. In this study, when the swirl injectors are used for the 1st designing of injector head of 170 tonf UDMH-LOX as the propellant of LRE, a distribution relation of the mass flow rate per unit area was calculated from the function of ${\Phi}$, which is related with the mass flow rate characteristics of swirl injector. And the combustion characteristics by circumferential axis were estimated using this relation under the consideration of combustion core and film cooling area.

  • PDF

Development of Real-Fluid based Flamelet Modeling for Liquid Rocket Injector (액체로켓분사기 해석을 위한 실제유체 기반의 난류연소모델 개발)

  • Kim, Seong-Ku;Choi, Hwan-Seok;Park, Tae-Seon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.150-155
    • /
    • 2010
  • Liquid rocket injectors play crucial roles on propulsive performance, combustion stability, and heat transfer characteristics. Nevertheless, their developments have mainly relied on empirical methods and expensive hot-firing tests due to lack of fundamental understanding of high pressure combustion phenomena in the near-injector regions. The present study was motivated by recent efforts to develop reliable modeling of liquid rocket combustion. The turbulent combustion model based on the flamelet concept has been extended to take into account real-fluid behaviors occurred at supercritical pressures, and validated against measurements for a cryogenic nitrogen injection, a non-premixed turbulent jet flame at atmospheric pressure, and a LOx/$GH_2$ coaxial shear injector at a supercritical pressure.

  • PDF

Effect of Gas-Liquid Scheme Injector on Acoustic Damping in Liquid Rocket Engine (액체 로켓엔진 분사기의 음향감쇠 효과에 관한 수치적 연구)

  • Park, I-Sun;Sohn, Chae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.79-86
    • /
    • 2005
  • The role of the injector as an acoustic resonator is studied for the high performance rocket engine adopting the gas-liquid scheme injector. Acoustic behavior in the combustor with single injector is investigated numerically adopting linear acoustic analysis for cold condition. Acoustic-damping effect of the injector is evaluated by damping factor as a function of the injector length. From the numerical results, it is found that the injector can play a significant role in acoustic damping and the optimum length of the injector corresponds to half of a full wavelength of the longitudinal mode with the acoustic frequency to be damped in the chamber. In baffled chamber, the optimum lengths of the injector are calculated as a function of baffle length for both cold and hot conditions.

Injection Condition Effects of a Pintle Injector for Liquid Rocket Engines on Atomization Performances (액체로켓 핀틀 인젝터의 분사조건이 미립화 성능에 미치는 영향)

  • Son, Min;Yu, Kijeong;Koo, Jaye;Kwon, Oh Chae;Kim, Jeong Soo
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.114-120
    • /
    • 2015
  • Effects of injection conditions on a pintle injector which is proper to recent liquid rocket engines requiring low cost, low weight, high efficiency and reusability were studied. The pintle injector with a typical moving pintle was used for atmospheric experiment using water and air. Injection pressures of water were considered 0.5 and 1.0 bar, 0.1 to 1.0 bar for injection pressures of air and 0.2 to 1.0 mm for pintle opening distance. Sauter mean diameters (SMD) of spray was measured at 50 mm distance from a pintle tip and SMD was treated as a representative parameter in this study. As a result, because of shape characteristics of the pintle injector, there was a transient region between the pintle opening distances of 0.6 and 0.7 mm and this region affected to mass flow rates and SMDs. Also, Reynolds numbers for gas, Weber numbers and momentum ratios were adopted as major non-dimensional paramters and the momentum ratio has strong correlation with SMD.