• Title/Summary/Keyword: Liquid Rocket Engine Development

Search Result 212, Processing Time 0.018 seconds

Development of Liquid Rocket Engine Test Facility (한국형발사체 엔진 지상 연소시험설비 개발)

  • Kim, Seung-Han;Chung, Yong-Gap;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.479-483
    • /
    • 2012
  • This paper describes the development status of rocket engine test facility for the performance evaluation of liquid rocket engine of KSLV-II 1st stage. Design specification and composition of rocket engine test facility are suggested based on the design requirements. The results of the basic design of rocket engine test facility will be used as base data for the detail design and construction of rocket engine ground test facility of KSLV-II 75tonf liquid rocket engine.

  • PDF

A Correction Method for Operating Mode Analysis of Gas Generator Cycle Liquid Propellant Rocket Engine (가스발생기 사이클 액체로켓엔진작동 모드 해석의 보정 방법)

  • Nam, Chang-Ho;Moon, Yoonwan;Park, Soon Young;Chung, Enhwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.104-110
    • /
    • 2018
  • Operating mode analysis of a liquid propellant rocket engine(LRE) is a crucial tool through the development of an engine. The operating mode analysis of an engine based on a collection of the acceptance tests of components shows discrepancies when compared to the test results. We propose a correction method for performance parameters to develop an engine analysis model for the gas generator cycle of an LRE. In order to simulate engine behavior, the performance parameters for the analysis model are tuned based on the test results of the 75tf engine of KSLV-II.

A Study on the Development Process of the Liquid Rocket Engine for the Upper Stage of the Korea Space Launch Vehicle-II (한국형발사체 상단 액체로켓엔진의 개발과정에 대한 고찰)

  • Seo, Kyoun-Su;Park, Soon-Young;Nam, Chang-Ho;Moon, Yoonwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.68-76
    • /
    • 2022
  • Upper stage of the Korea Space Launch Vehicle-II(KSLV-II) uses a 7-tons class liquid rocket engine and is an open gas generator cycle with a turbopump supply method that uses kerosene/liquid oxygen as the propellant combination. This study first provided a brief overview of the design and development process of the upper stage engine. In addition, it introduced the solutions and results applied to some of the problems that occurred during the development process of the upper stage engine.

Liquid Hydrogen/Liquid Oxygen Rocket Engine Technology (액체수소/액체산소 로켓엔진 기술 검토)

  • Cho, Nam-Kyung;Park, Soon-Young;Kim, Seong-Han;Han, Yeong-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.47-59
    • /
    • 2022
  • Liquid hydrogen/liquid oxygen rocket engines with highest specific impulse have been developed since the 1950s and used until now to maximize the capability of space launch vehicles. Domestic liquid hydrogen infrastructures for the production, transportation and distribution are being expanded at world-class level with the rise of hydrogen economy, which is a great opportunity for the performance enhancement for indigenous space launch vehicles. In this paper, feasibility of applying liquid hydrogen as a propellant is investigated in various aspects. The status of domestic liquid hydrogen infrastructure, the technologies required for liquid hydrogen engines, and operational aspects for safe handling of hydrogen are reviewed. In addition, test facilities for developing hydrogen engines are introduced briefly.

Verification Test of KSR-III Liquid Propellant Rocket Prototype Engine (KSR-III 액체추진로켓 시제엔진 검증시험)

  • 하성업;류철성;설우석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.67-74
    • /
    • 2001
  • Based on the national space development project, the necessity of developing liquid propellant rocket engine is revealed to secure the basic technology for the development of individual artificial-satellite launcher. Consequently, KARI (Korea Aerospace Research Institute) is developing a liquid propellant rocket engine for the KSR-III. Currently, a prototype engine using kerosene/LOx which produces 13-ton thrust is designed, fabricated and tested. In this paper, test procedure and technique for liquid propellant rocket engine are introduced with the analysis of static and dynamic test data.

  • PDF

Strain Characteristics of a 75 tonf-class Engine for Ground Firing Test (75톤급 엔진 지상 연소 시험 변형율 특성)

  • Yoo, Jaehan;Kim, Jinhyuk;Jeon, Seongmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.126-133
    • /
    • 2018
  • A liquid rocket engine experiences various static loads in flight, such as high pressures due to propellents, thrust and thermal loads due to cryogenic liquid oxygen and combustion gas with extreme vibration. During the engine development stage, structural analyses and investigation on the strain measured from ground firing tests are necessary for determining the structural reliability of the engine. In this study, the strain characteristics, obtained from the ground firing tests of a 75 tonf-class engine, were analyzed.

A study on the relation between the first stage liquid rocket engine and the launch vehicle capability (1단용 액체로켓엔진과 발사체 운송 능력과의 관련성 연구)

  • Moon, In-Sang;Moon, Il-Yoon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.134-140
    • /
    • 2007
  • Since the successful launch of Sputnik 1, a rocket engine was evolved rapidly. The first artificial satellite Sputnik has only 182 lb mass with a size of a basket ball, a modern artificial satellite is over 10 tons. As the size and the mass of an artificial satellite increases, the stronger launch vehicles are required. However, the story is different in the field of the rocket engine development. In the early to mid age of the space race, rocket engine study was focused on the stronger and bigger engine development, but from the 80's the tide has changed. A rocket engine must be strong and also economic. This trend was accelerated from when a rocket launch was used commercially. In this study, a capability of the launch vehicle and engine was investigated to provide a reference for a liquid rocket engine development plan.

  • PDF

Development of High-Pressure Subscale Thrust Chamber for Verifying Core Technology for KSLV-II Performance Enhancement (한국형발사체 성능 고도화 핵심기술 검증을 위한 고압 축소형 연소기 개발)

  • Kim, Jonggyu;Kim, Seong-Ku;Joh, Miok;Ryu, Chulsung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.19-27
    • /
    • 2021
  • In this study, a high-pressure subsacle thrust chamber was developed to verify the core technology for KSLV-II performance enhancement. The core technologies are the design of an injector for high-pressure combustion, development of a combustion stabilization device using the additive manufacturing technique, and the design and fabrication of mixing head and regeneratively cooled combustion chamber. The core technologies, which have been verified through the development of high-pressure subscale thrust chamber, will be used to develop large engine liquid rocket engine thrust chamber in the future.

Program Development for the Mode Calculation of Gas-Generator Cycle Liquid Rocket Engine (가스발생기 사이클 액체로켓 엔진의 모드 해석 프로그램 개발)

  • Park, Soon-Young;Cho, Won-Kook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.366-370
    • /
    • 2008
  • Mode analysis is very important for the development of liquid rocket engine in various applications. We developed a mode analysis program for the gas-generator cycle liquid rocket engine by proposing 13 independent equations with 13 independent variables which can be solved by Newton method. As an example we calculated the change of engine operating mode according to the control valve's loss coefficient change located in the gas-generator oxidizer supply line. And we concluded that this program can give basic idea for the mode analysis of gas-generator cycle liquid rocket engine.

  • PDF

Development of Thrust Measurement System and Study of Calibration in Liquid Rocket Engine (액체 로켓 엔진에서의 추력 측정 장치 개발과 calibration에 관한 연구)

  • Park, Soo-Hwan;Park, Hee-Ho;Kim, Yoo;Cho, Nam-Choon;Keum, Young-Tag
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.39-46
    • /
    • 2002
  • It is very difficult to measure an exact thrust in liquid rocket engine compared to solid rocket motor, however it is very important to estimate a performance of engine for developing rockets. To get a good result, we have to concern about errors of measurement and find a method of calibration. In this research, we developed new thrust measurement system for liquid rocket engine.