• Title/Summary/Keyword: Liquid Propulsion Rocket

Search Result 683, Processing Time 0.025 seconds

Design Process of Liquid-Propellant Propulsion System for Space Launch Vehicle (우주발사체용 액체추진시스템 설계 프로세스)

  • Kim Hui-Tae;Han Sang-Yeop;Lee Han-Ju;Cho Kie-Joo;Oh Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.147-150
    • /
    • 2005
  • Space launch vehicles mainly use the liquid-propellant propulsion system which has easy thrust control ability and high specific impulse for that the payload like satellite and spacecraft should be entered into exact orbit. However, the liquid-propellant propulsion system is very difficult to develop because it is more complicate than the solid rocket propulsion system and demands very high technology. In space launch vehicle developing procedure the system design level is very important thing to reduce cost, shorten schedule, and improve the performance. The system design process was introduced for selecting the best liquid-propellant propulsion system on this paper.

  • PDF

A Study on Anti-oxidization Coating for Staged Combustion Cycle Rocket Engines (다단연소 사이클 엔진 적용을 위한 내산화 코팅에 관한 연구)

  • Kim, Young-June;Rhee, Byong-ho;Noh, Yong-Oh;Bae, Byung-Hyun;Hyun, Seong-Yoon;Cho, Hwang-Rae;Bang, Jeong-Suk;Byon, Eung-Sun;Han, Yeoung-Min
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.125-131
    • /
    • 2018
  • Some propellants in a liquid rocket engine are burned in the pre-burner of a staged combustion cycle engine, resulting hot gas drives the turbine. The burned gas passing through the turbine is supplied to the combustor at high temperature and pressure. The form of the gas can be fuel rich or oxidizer rich dependent upon the mixture ratio or the engine scheme. When the cycle works at oxidizer-rich condition, the metal pipes composing the engine can be ignited or even exploded by an impact of very a small particle. In this study, we developed the powder combination and processes for an anti-oxidation coating through the analysis of various coating materials.

Transient Analysis of a Liquid Rocket Engine System Considering Thrust Control (추력 제어를 고려한 액체로켓 엔진시스템 과도해석)

  • Park Soon-Young;Choi Hwan-Seok;Seol Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.67-75
    • /
    • 2004
  • It is essential to develop a transient analysis model for the turbopump-fed type liquid rocket engine development, especially for deriving the number of test and its parameters. In this study we proposed a mathematical model of turbopump-fed type liquid rocket engine, and inspected transient mode changes of a rocket engine according to variations of thrust control valve opening ratio. To verify the results, we solved the same problem with AnaSyn software from Russia, and concluded that the results of transient code we developed deviated within 2% from AnaSyn results. Also, using the transient engine analysis code we showed the possibility to find out the system level design Parameters of the components. For example, we modeled a pressure stabilizer which is used to control the consistency of mixture ratio in the gas generator as forced damping system, and found the stability range of the natural frequency and the damping ratio with the transient engine system analysis code.

Development of KSR-III Propulsion Feeding System (KSR-III 추진기관 공급계 개발)

  • 이대성;조인현;정태규;강선일;김용욱;정영석;권오성;정동호;오승협
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.4
    • /
    • pp.37-45
    • /
    • 2002
  • The development process of KSR-III propulsion feeding system is subscripted. The purpose of propulsion feeding system is to feed a certain amount of propellant from propellant tank to engine by the end of combustion. Pressure-fed liquid rocket, KSR-III has the unique characteristics of both pressure regulator and cavitation venturi as a passive flow control device. Main parameters of feeding system are confirmed by both water test and CFD(전산유체) technique. Flow control effect with venturi is confirmed by water test. Initial stabilization characteristic of pressure regulator is confirmed by real propellant test. And, to avoid the effect of resonance between rocket and feeding system, this article deal with POGO(포고) analysis to the feeding system.

Development of System Analysis Program of Liquid Rocket Engine II (액체로켓엔진 시스템 통합 해석 프로그램 개발 2)

  • Lee, Sangbok;Son, Min;Seo, Jongcheol;Lim, Taekyu;Roh, Tae-Seong;Koo, Jaye;Kim, Kuisoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.16-25
    • /
    • 2014
  • The system analysis and design program of the liquid rocket engine has been developed for preliminary conceptual design process. The program consists of modular programs analyzing the main thruster, the gas-generator, turbo-pumps, the turbine, pipes, valves and so on. Each module has been developed in order to estimate performance, weight, and shape parameters of the components. The results of them have been verified with experimental data or other programs.

Design Optimization of Liquid Rocket Engine Using Genetic Algorithms (유전알고리즘을 이용한 액체로켓엔진 설계 최적화)

  • Lee, Sang-Bok;Lim, Tae-Kyu;Roh, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.2
    • /
    • pp.25-33
    • /
    • 2012
  • A genetic algorithm (GA) has been employed to optimize the major design variables of the liquid rocket engine. Pressure of the main combustion chamber, nozzle expansion ratio and O/F ratio have been selected as design variables. The target engine has the open gas generator cycle using the LO2/RP-1 propellant. The gas properties of the combustion chamber have been obtained from CEA2 and the mass has been estimated using reference data. The objective function has been set as multi-objective function with the specific impulse and thrust to weight ratio using the weight method. The result shows about 4% improvement of the specific impulse and 23% increase of the thrust to weight ratio. The Pareto frontier line has been also obtained for various thrust requirements.

Thrust Estimation Acting on Rotor of LOX Pump for Liquid Rocket Engine (액체로켓엔진용 산화제펌프 회전체의 하중 예측)

  • Kim, Dae-Jin;Choi, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.98-104
    • /
    • 2015
  • Excessive thrust acting on the rotor of pump can cause the damage of pump or the decrease of pump lifetime. Therefore, for ensuring the safety of LOX pump of a liquid rocket engine, the thrust of pump rotor is estimated by similarity tests. Axial thrust is indirectly measured by an axial thrust measurement unit positioned outside pump. Radial thrust is calculated based on pressure distribution of volute scroll. As a result, axial and radial thrust are increased when the flowrate of pump decreases. However, both thrusts do not affect the stability of pump rotor since their values are not large.

Structural Design of Liquid Rocket Thrust Chamber Regenerative Cooling Channel (액체로켓 연소기 재생냉각 채널 구조설계)

  • Ryu Chul-Sung;Chung Yong Hyun;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.134-138
    • /
    • 2005
  • The structural analysis and water pressure test of regenerative liquid rocket thrust chamber cooling channel specimens are performed at room temperature. material properties of copper alloy are obtained by uniaxial tension test at room temperature and used of elastic-plastic structural analysis. The plate type of cooling channel specimen are manufactured and performed water pressure test in order to confirm the analysis results. The differences between results of elastic-plastic analysis and that of water pressure test of cooling channel specimen are small and find that manufacturing process affect the structural stability of cooling channel very much because cooling channel thickness is small

  • PDF

Performance Design of Turbopump Type Liquid Rocket Engine System with Separate Flow Cycle (터보펌프 방식을 사용하는 개방형 가스발생기 사이클 로켓엔진의 성능설계)

  • Park Byunghoon;Yang Heesung;Kim Wonho;Ju Daesung;Yoon Woongsup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.123-127
    • /
    • 2005
  • LRE(liquid rocket engine) performance design code with several modules for each engine component has been developed for a preliminary design purpose. Thrust chamber, non-cryogenic centrifugal pump, single stage axial impulse turbine, gas generator and exhaust pipe for extra thrust have been considered. For simplicity, pump exit pressures are fixed, which eliminates pressure balancing problem between thrust chamber and turbopump unit. In this paper, calculated performance parameters with system flow charts and the design methodologies for each component are briefly presented and the results are compared with tile real engine specification.

  • PDF

Methodical Aspects of Experimental Improvement on Working Capacity of Liquid Rocket Engine (액체로켓엔진 시험-개선과정의 방법론)

  • Kim, Cheul-Woong;Bershadskiy, Vitaly A.;Kim, Sang-Heon;Oh, Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • As a result of the study on a number of the works, published in Russia, the methodical aspects of experimental improvement on working capacity of LRE (Liquid Rocket Engine) are reviewed. In the article, on the basis of the experience of Russia and USA, the special features of experimental improvement on working capacity of LRE and the methods of its rational implementation formulated. The organizational and technical solutions of experimental improvement on working capacity of LRE for achieving the required level of the reliability and decreasing the material expenditures are presented in the article. These suggested solutions can be used for the development of LRE.