• Title/Summary/Keyword: Liquid Phase Burning

Search Result 18, Processing Time 0.021 seconds

Modeling of burning surface growth and propagation in AP-based composite propellant combustion (AP추진제의 연소면 형성 및 전파 모델링 연구)

  • Jung, Tae-Yong;Kim, Ki-Hong;Yoo, Ji-Chang;Do, Young-Dae;Kim, Hyung-Won;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.191-195
    • /
    • 2009
  • In the solid rocket propellant combustion, dynamic phase change from solid to liquid to vapor occurs across the melt layer. During the burning surface, micro scale bubbles form as liquid and gas phases are mixed in the intermediate zone between the propellant and the flame. The experimentally measured thickness of this layer called the foam layer is approximately 1 micron at 1 atmosphere. In this paper, we present a new melting layer model derived from the classical phase change theory. The model results show that the surface of burning grows and propagate uniformly at a velocity of $r=ap^n$.

  • PDF

Experimental and Numerical Study on Characteristics of Air-assisted Spray and Spray Flames (2유체 분무의 연소특성에 관한 실험 및 수치 해석적 연구)

  • Kim, Dong-Il;Oh, Sang-Huen
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.51-63
    • /
    • 1998
  • Air-assisted atomizer flames are investigated numerically to study spray structures in nonburning and burning conditions based on experimental data. A PDA is used to measure droplet size, velocity, and number density for both nonburning and burning spray. Computations utilize time-averaged gas-phase equations and $k-{\varepsilon}$ turbulence model for simplicity. The major features of the liquid-phase model are that a SSF approach is used to represent the effect of gas-phase turbulence on droplet trajectories and vaporization, an infinite-diffusion model is employed to represent the transient liquid-phase process. Computation and experiment results show that the droplet acceleration and evaporation proceed quickly in near the atomizer, characterizing high number densities and a strong convective effect. The primary combustion zone, however, is dorminated by the gas phase reaction and exhibits a sheath combustion.

  • PDF

A phase transformation model for burning surface in AP/HTPB propellant combustion (AP추진제의 연소면 형성 및 전파 모델링 연구)

  • Jung, Tae-Yong;Doh, Young-Dae;Yoo, Ji-Chang;Yoh, Jack Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.4
    • /
    • pp.363-368
    • /
    • 2010
  • In the solid rocket propellant combustion, the dynamic phase change from solid to liquid to vapor occurs across the melt layer. During the surface burning, liquid and gas phases are mixed in the intermediate zone between the propellant and the flame to form micro scale bubbles. The known thickness of the melt layer is approximately 1 micron at $10^5$ Pa. In this paper, we present a model of the melt layer structure and the dynamic motion of the melt front derived from the classical phase field theory. The model results show that the melt layer grows and propagates uniformly according to exp(-1/$T_s$) with $T_s$ being the propellant surface temperature.

Influence of Initial Diameter on the Combustion Characteristics of n-heptane Droplet (초기 직경이 n-heptane 액적 연소 특성에 미치는 영향)

  • Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.94-99
    • /
    • 2013
  • The spherically-symmetric burning of an isolated droplet is a dynamic problem that involves the coupling of chemical reactions and multi-phase flow with phase change. For the improved understanding of these phenomena, this paper presents the numerical results on the n-heptane droplet combustion conducted at a 1 atm ambient pressure in three different initial droplet diameter ($d_0$). The main purpose of this study is to provide basic information of droplet burning, extinction and flame behavior of n-heptane and improve the ability of theoretical prediction of these phenomena. To achieve these, the numerical analysis was conducted in terms of normalized droplet diameter ($d/d_0$), flame diameter ($d_f$) and flame standoff ratio (FSR) under the assumptions that the droplet combustion can be described by both the quasi-steady behavior for the region between the droplet surface and the flame interface and the transient behavior for the region between the flame interface and ambient surrounding.

Hardening Properties of Activated Calcium Dialuminate Clinker with Phosphoric Acid Solution

  • Song, Tae-Woong;Kim, Sei-Gi
    • The Korean Journal of Ceramics
    • /
    • v.3 no.4
    • /
    • pp.235-238
    • /
    • 1997
  • Basic properties of new cement pastes based on the system $CaO-Al_2O_3-P_O_5-H_2O$were studied Phosphoric acid solutions and calcium dialuminate clinkers synthesized by the hydration-burning method were used for liquid and powder components of the paste, respectively Variation in the compositions of the paste was achieved by changing the liquid/powder ratio and the concentration of phosphoric acid solution. The hardening rate of the paste was so largely affected by the amount of phosphoric acid that hardening was inhibited with the low-concentrated solution but was explosively accelerated with the high-concentrated solution. The phosphoric acid solutions of concentration of 45~50% and the liquid/powder ratio of 0.5~1.5 were favoured for the high early-strength cement paste with the reasonable hardening rate and high strength. The binding phase of hardened paste was the dense amorphous gel of the system $CaO-Al_2O_3-P_O_5-H_2O$. in which the unreacted calcium dialuminate grains were embeded.

  • PDF

Nonlinear Acoustic-Pressure Responses of Oxygen Droplet Flames Burning in Gaseous Hydrogen

  • Chung, Suk-Ho;Kim, Hong-Jip;Sohn, Chae-Hoon;Kim, Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.510-521
    • /
    • 2001
  • A nonlinear acoustic instability of subcritical liquid-oxygen droplet flames burning in gaseous hydrogen environment are investigated numerically. Emphases are focused on the effects of finite-rate kinetics by employing a detailed hydrogen-oxygen chemistry and of the phase change of liquid oxygen. Results show that if nonlinear harmonic pressure oscillations are imposed, larger flame responses occur during the period that the pressure passes its temporal minimum, at which point flames are closer to extinction condition. Consequently, the flame response function, normalized during one cycle of pressure oscillation, increases nonlinearly with the amplitude of pressure perturbation. This nonlinear response behavior can be explained as a possible mechanism to produce the threshold phenomena for acoustic instability, often observed during rocket-engine tests.

  • PDF

Unsteady Vaporization of Burning Droplet at High Pressure Environments With Linear Acoustic Mode (강한 음향장에 구속된 고압 액적의 연소)

  • Kim, Sung-Yup;Shin, Hyun-Ho;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1122-1127
    • /
    • 2004
  • an isolated droplet combustion exposed to pressure perturbations in stagnant gaseous environment is numerically conducted. Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous air. Results show that the operating pressure and driving frequency have an important role in determining the amplitude and phase lag of a combustion response. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Phase difference between pressure and evaporation rate decreases due to the reduced thermal inertia at high pressure. In addition to this, augmentation of perturbation frequency also enhances amplification of vaporization rate because the time period for the pressure oscillation is much smaller than the liquid thermal inertia time. The phase of evaporation rate shifts backward due to the elevated thermal inertia at high acoustic frequency.

  • PDF

Lean Burn Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG 엔진의 희박연소특성에 관한 연구)

  • 오승묵;김창업;강건용;우영민;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.1-11
    • /
    • 2004
  • Combustion and fuel distribution characteristics of heavy duty engine with the liquid phase LPG injection(LPLI) were studied in a single cylinder engine, Swirl ratio were varied between 1.2, 2.3, and 3.4 following Ricardo swirl number(Rs) definition, Rs=2.3 showed the best results with lower cycle-by-cycle variation and shorter burning duration in the lean region while strong swirl(Rs=3.4) made these worse for combustion enhancement. Excessive swirl resulted in reverse effects due to high heat transfer and initial flame kernel quenching. Fuel injection timings were categorized with open valve injection(OVI) and closed valve injection(CVI). Open valve injection showed shorter combustion duration and extended lean limit. The formation of rich mixture in the spark plug vicinity was achieved by open valve injection. With higher swirl strength(Rs=3.4) and open valve injection, the cloud of fuel followed the flow direction and the radial air/fuel mixing was limited by strong swirl flow. It was expected that axial stratification was maintained with open-valve injection if the radial component of the swirling motion was stronger than the axial components. The axial fuel stratification and concentration were sensitive to fuel injection timing in case of Rs=3.4 while those were relatively independent of the injection timing in case of Rs=2.3.

Numerical Studies on Vaporization Characterization and Combustion Processes in High-Pressure Fuel Sprays (고압 상태에서의 연료 분무의 증발 및 연소 특성 해석)

  • Moon, Y.W.;Kim, Y.M.;Kim, S.W.;Kim, J.Y.;Yoon, I.Y.
    • Journal of ILASS-Korea
    • /
    • v.3 no.3
    • /
    • pp.49-59
    • /
    • 1998
  • The vaporization characteristics and spray combustion processes in the high-pressure environment are numerically investigated. This study employ the high-pressure vaporization model together with the state-of-art spray submodels. The present high-pressure vaporization model can account for transient liquid heating, circulation effect inside the droplet forced convection, Stefan flow effect, real gas effect and ambient gas solubility in the liquid droplets. Computations are carried out for the evaporating sprays, the evaporating and burning sprays, and the spray combustion processes of the turbocharged diesel engine. Numerical results indicate that the high-pressure effects are quite crucial for simulating the spray combustion processes including vaporization, spray dynamics, combustion, and pollutant formation.

  • PDF

Numerical Study on the CO and NO of Rocket Plume as the Type of Water Injection in the Flame Guiding Duct (화염유도로 냉각수 분사방식에 따른 로켓 플룸의 CO와 NO 반응의 수치해석)

  • Kim, Seong-Lyong;Kim, Seung-Han;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.39-46
    • /
    • 2015
  • A numerical study has been conducted on CO after burning and NO generation of the rocket plume as the cooling water injected to the rocket plume. The present study shows that the cooling water has a role of increasing the degree of CO after burning and reducing NO generation. However the effect varies as the injection configuration of the cooling water. When the cooling water is injected at the side of the plume, NO generation is dramatically reduced while the degree of CO after burning is relatively low. When the cooling water is injected at the side and the center of the plume, CO after burning is highly increased and NO generation is also dramatically reduced.