• Title/Summary/Keyword: Liquid Metal Flow

Search Result 151, Processing Time 0.03 seconds

Analysis of TLIM Electromagnetic Pump (TLIM 전자펌프의 특성해석 및 고찰)

  • Jeon, Mun-Ho;Yoon, Tae-Kyu;Kwak, Hee-Sung;Kim, Chang-Eob
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.758-759
    • /
    • 2008
  • This paper presents a design of the electromagnetic pump with an tubular type linear induction motor(TLIM). The TLIM was designed for the fluid system, flow rate $15[{\ell}/min]$, and the thrust 39[N] at 0.29[m/s]. The TLIM is compared measurement with analysis. The electromagnetic pump of flow characteristics are calculated by treating TLIM thrust as a source term in the Navier-Stokes equation. The numerical analysis of flow characteristics of the liquid metal is presented for the various condition and discussed.

  • PDF

Fabrication of $Al_2O_3/Al$ Composite Materials by Mashy State Forming and its Hot Extrusion Process (반용융가공에 의한 $Al_2O_3/Al$ 복합재료의 제조 및 열간압출공정)

  • Kang, Chung-Gil;Kang, Sung-Soo
    • Journal of Korea Foundry Society
    • /
    • v.13 no.3
    • /
    • pp.248-258
    • /
    • 1993
  • A semi-solid alloy in which solid and liquid phase are co-existing is obtained by stirring of A17075 molten metal. A semi-solid alloy is dependent on the corresponding temperature within the solid-liquid range, and the process parameters should be controlled accurately to obtain the homogeneous semisolid alloy. The fabrication possibility of fiber-reinforced aluminum alloy containing $Al_2O_3$ short fibers with vigorous agitation of short fibers were obtained by control of stirring time, solid fraction and impeller speed in extrusion billet fabrication processes. The microstructure to extrusion billet fabricated by low pressure casting was investigated for fiber dispersion state. The relationship between the extrustion force and velocity at hot extrustion, the flow strain and extrusion ratio were theoretically described. The surface defects with lubricants and without lubricant after hot extrusion were investigated. The composites materials after hot extrusion were measured by vickers hardness with extrusion ratio. It has become clear that the secondary working such as hot extrusion was very useful to obtained improved the mechanical properties of metal matrix composites.

  • PDF

A validation study of the SLTHEN code for hexagonal assemblies of wire-wrapped pins using liquid metal heating experiments

  • Sun Rock Choi;Junkyu Han;Huee-Youl Ye;Jonggan Hong;Won Sik Yang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1125-1134
    • /
    • 2024
  • This paper presents a validation study of the subchannel analysis code SLTHEN used for the core thermal-hydraulic design of the Prototype Gen-IV sodium-cooled fast reactor (PGSFR). To assess the performance of the ENERGY model of SLTHEN, four liquid metal heating experiments conducted by ORNL, WARD, and KIT with hexagonal assemblies of wire-wrapped rod bundles were analyzed. These experiments were performed with 19-and 61-pin bundles and varying power distributions of axial and radial peaking factors up to 1.4 and 3.0, respectively. The coolant subchannel temperatures measured at different axial locations were compared with the SLTHEN predictions with the Novendstern, Chiu-Rohsenow-Todreas (CRT), and Cheng-Todreas (CT) correlations for flow split and mixing in wire-wrapped pin bundles. The results showed that the SLTHEN predicts the measured subchannel temperatures reasonably well with root-mean-square errors of ~10 % and maximum errors of ~20 %. It was also observed that the CRT and CT correlations consistently outperform the Novendstern correlation.

Design of Turbulent In-situ Mixing Mixer and Fabrication of Cu-TiB2 Nanocomposities (난류 용탕 In-situ 합성 믹서의 설계 및 Cu-TiB2 나노 복합재료의 제조)

  • Choi, Baek-Boo;Park, Jung-Su;Yun, Ji-Hun;Ha, Man-Young;Park, Yong-Ho;Park, Ik-Min
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.11-17
    • /
    • 2007
  • Turbulent in-situ mixing process is a new material process technology to get dispersed phase in nanometer size by controlling reaction of liquid/solid, liquid/gas, flow ana solidification speed simultaneously. In this study, mixing which is the key technology to this synthesis method was studied by computational fluid dynamics. For the simulation of mixing of liquid metal, static mixers investigated. Two inlets for different liquid metal meet ana merge like 'Y' shape tube having various shapes and radios of curve. The performance of mixer was evaluated with quantitative analysis with coefficient of variance of mass fraction. Also, detailed plots of intersection were presented to understand effect of mixer shape on mixing. The simulations show that the Reynolds number (Re) is the important factor to mixing and dispersion of $TiB_2$ particles. Mixer was designed according to the simulation, and $Cu-TiB_2$ nano composites were evaluated. $TiB_2$ nano particles were uniformly dispersed when Re was 1000, and cluster formation and reduction in volume fraction of $TiB_2$ were found at higher Re.

Development of Flat Plate Type Small Cooling Device (Flat Plate Type 소형 냉각소자 개발)

  • Moon, Seok-Hwan;Hwang, Gunn;You, In-Kyu;Cho, Kyoung-Ik;Yu, Byoung-Gon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.170-174
    • /
    • 2008
  • Recently, a problem related to the thermal management in portable electronic and telecommunication devices is becoming issued. That is due to the trend of slimness of the devices, so it is not easy to find the optimal thermal management technology for the devices. From now on, a pressed circular type cooling device has been mainly used, however the cooling device with thin thickness is becoming needed by the inner space constraint. In the present study, the silicon and metal flat plate type cooling device with the separated vapor and liquid flow path was designed and fabricated. Through the experimental study, the normal isothermal characteristic by vapor-liquid phase change was confirmed and the cooling device with 70mm of total length showed 6.8W of the heat transfer rate within the range of $4{\sim}5^{\circ}C$/W of thermal resistance. In the meantime, the metal cooling device was developed for commercialization. The device was designed to have all structures of evaporator, vapor flow path, liquid flow path and condenser in one plate. And an envelope of that could be completed by combining the two plates of same structure and size. And the simplicity of fabrication process and reduction of manufacturing cost could be accomplished by using the stamping technology for fabricating large flow paths relatively. In the future, it will be possible to develop the commercialized cooling device by revising the fabrication process and enhancing the thermal performance of that.

  • PDF

Study on the Characteristics of Erosion-Corrosion for Heat Exchanger of Shell and Tube Type(I) (원통다관형 열교환기의 침식-부식 특성에 관한 연구 (I))

  • 임우조;정해규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.2
    • /
    • pp.196-200
    • /
    • 1999
  • In the case that erosion and corrosion occurs in machinery and structure at the same time, the synergy effect by erosion-corrosion affects fatal effect to durability of machinery and structure. Therefore, in machinery and structure which use corrosion liquid, the study of the synergy effect of erosion-corrosion which affects metal material is requested. In this paper. the flow corrosion experiment about the effect of temperature change and liquid velocity change in sea water was carried out to study the characteristics of erosion-corrosion for tube material Cu heat exchanger The main results obtained are as follows. (1) Damage appearance of tube outside by erosion-corrosion becomes dull because electrode potentials of Cu tube is higher than electrode potential of STPG38 shell. (2) In the cooling system by sea water, the weight loss rate of Cu at tube outside liquid temperature of $70^{\circ}C$ is higher than that of temperature of $20^{\circ}C$. (3) In cooling system by sea water, the weight loss rate of Cu at liquid velocity of 5.1m/s is higher than that of velocity of 1.47m/s. But as the testing time passed, the weight loss rate of Cu at velocity of 5.1m/s is almost steady and becomes dull at velocity of 1.47m/s.

  • PDF

Malaria Parasite Separation from White Blood Cells Using Conductive Liquid-Based Standing Surface Acoustic Wave (CL-SSAW) (전도성 액체기반 정상표면탄성파(CL-SSAW)를 이용한 백혈구로부터의 말라리아 기생충 분리)

  • Jee, Hyunseul;Nam, Jeonghun;Lim, Chae Seung
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.5
    • /
    • pp.151-157
    • /
    • 2019
  • An acoustofluidic device using conductive liquid-based electrodes was developed for malaria parasite separation from white blood cells. In this device, the electrode channels filled with a conductive liquid were used to generate standing surface acoustic waves (SSAWs) in a fluidic channel, which can overcome the limitation of conventional patterned metal electrodes. Separation performance of the device was evaluated using fluorescent polystyrene particles with two different sizes (2 and $10{\mu}m$ diameters), which were successfully separated. In addition, a mixture of malaria parasites and white blood cells were also efficiently separated with high purity of ~98% in the CL-SSAW device at the flow rate of $12{\mu}l/min$.

A Numerical Study on the Heat Transfer Characteristics of Impinging Jet Flow in the Presence of Applied Magnetic Fields (자기장이 인가된 충돌제트의 열전달 특성에 관한 수치적 연구)

  • Lee Hyun Goo;Yoon Hyun Sik;Hong Seung Do;Ha Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.653-661
    • /
    • 2005
  • The present study numerically investigates two-dimensional fluid flow and heat transfer ir the confined jet flow in the presence of applied magnetic field. For the purpose of controlling vortex shedding and heat transfer, numerical simulations to calculate the fluid flow and heat transfer in the confined jet are performed for different Reynolds numbers in the absence and presence of magnetic fields and for different Prandtl numbers of 0.02 (liquid metal), 0.7 (air) and 7 (water) in the range of $0{\le}N{\le}0.05$, where N is the Stuart number (interaction parameter) which is the ratio of electromagnetic force to inertia force. The present study reports the detailed information of flow and thermal quantities in the channel at different Stuart numbers. As the intensity of applied magnetic fields increases, the vortex shedding formed in the channel becomes weaker and the oscillating amplitude of impinging jet decreases. The flow and thermal fields become the steady state if the Stuart number is greater than the critical value. Thus the Nusselt number at the stagnation point representing the heat transfer characteristics also vary as a function of Stuart number.