• 제목/요약/키워드: Liquid Metal Fast Breeder Reactor(LMFBR)

검색결과 4건 처리시간 0.02초

액체금속로 Y-구조물의 비탄성 열응력 해석 및 손상평가에 관한 유한요소해석 (Finite element analysis of inelastic thermal stress and damage estimation of Y-structure in liquid metal fast breeder reactor)

  • 곽대영;임용택;김종범;이형연;유봉
    • 대한기계학회논문집A
    • /
    • 제21권7호
    • /
    • pp.1042-1049
    • /
    • 1997
  • LMFBR(Liquid Metal Fast Breeder Reactor) vessel is operated under the high temperatures of 500-550.deg. C. Thus, transient thermal loads were severe enough to cause inelastic deformation due to creep-fatigue and plasticity. For reduction of such inelastic deformations, Y-piece structure in the form of a thermal sleeve is used in LMFBR vessel under repeated start-up, service and shut-down conditions. Therefore, a systematic method for inelastic analysis is needed for design of the Y-piece structure subjected to such loading conditions. In the present investigation, finite element analysis of heat transfer and inelastic thermal stress were carried out for the Y-piece structure in LMFBR vessel under service conditions. For such analysis, ABAQUS program was employed based on the elasto-plastic and Chaboche viscoplastic constitutive equations. Based on numerical data obtained from the analysis, creep-fatigue damage estimation according to ASME Code Case N-47 was made and compared to each other. Finally, it was found out that the numerical predictio of damage level due to creep based on Chaboche unified viscoplastic constitutive equation was relatively better compared to elasto-plastic constitutive formulation.

액체 금속 구동용 선형유도전자램프의 자속밀도 분포 해석 (Flux Density Analysis of Linear Induction Electromagnetic Pumps for Liquid Metal)

  • 장남영;은재정;박태봉;최훈기;유근종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.906-908
    • /
    • 2003
  • A Linear induction electromagnetic(EM) pump of liquid metal fast breeder reactor(LMFBR) is used for the purpose that the liquid metal of high temperature is transported by EM force. This paper evaluates magnetic flux density necessary for transporting liquid metal, using analytical model of the linear induction EM pump. Using the 2-D finite element method(2-D FEM), magnetic flux density is estimated in consideration of a geometric model, electric parameter, and velocity of liquid metal. From the viewpoint of hydrodynamics, the results can be used for flow analysis of the liquid metal.

  • PDF

풀형 고속증식로의 과도 현상을 모사하는 Fast Running System Code개발 (Fast Running System Code Development to Simulate Transient Behavior of Pool-Type LMFBRs)

  • Youg Bum Lee;Soon Heung Chang;Mann Cho
    • Nuclear Engineering and Technology
    • /
    • 제17권1호
    • /
    • pp.16-24
    • /
    • 1985
  • 풀형 고속증식로에서의 과도 현상을 모사할 수 있는 전산 모델이 개발되었다. 이 전산 모델 SIM-FARP는 어떠한 펌프로의 전원 상실사고나 완전한 강제냉각 상실사고, 그리고 자연순환 과정 등을 모사할 수 있는 Fast Running Computer Code이다. 이에 따라 8개의 지배방정식이 유도되었으며, 이8개의 미분 방정식을 풀기 위해 Runge-Kutta의 수치해석방법이 사용되었다. 개발된 전산 프로그램은 두 가지 예제에 적용되었는데 이는 Super-Phenix-I에서의 펌프에의 전원상실사고 및 원자로가 정지되지 않는 상태에서의 외부전원 상실사고이다.

  • PDF

316L 스테인리스 강의 고온 저주기 피로 수명식 개발 (Development of a New LCF Life Prediction Model of 316L Stainless Steel at Elevated Temperature)

  • 홍성구;이순복
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.521-527
    • /
    • 2002
  • In this paper, tensile behavior and low cycle fatigue behavior of 316L stainless steel which is currently favored structural material for several high temperature components such as the liquid metal cooled fast breeder reactor (LMFBR) were investigated. Research was performed at 55$0^{\circ}C$, $600^{\circ}C$ and $650^{\circ}C$ since working temperature of 316L stainless steel in a real field is from 40$0^{\circ}C$ to $650^{\circ}C$. From tensile tests performed by strain controls with $1{\times}10^{-3}/s,\; l{\times}10^{ -4}/s \;and\; 1{\times}10/^{ -5}/ s $ strain rates at each temperature, negative strain rate response (that is, strain hardening decreases as strain rate increases) and negative temperature response were observed. Strain rate effect was relatively small compared with temperature effect. LCF tests with a constant total strain amplitude were performed by strain control with a high temperature extensometer at R.T, 55$0^{\circ}C$, $600^{\circ}C$, $650^{\circ}C$ and total strain amplitudes of 0.3%~0.8% were used and test strain rates were $1{times}10^{-2} /s,\; 1{times}10^{-3} /s\; and\; 1{times}10^{-4} /s$. A new energy based LCF life prediction model which can explain the effects of temperature, strain amplitude and strain rate on fatigue life was proposed and its excellency was verified by comparing with currently used models.