• 제목/요약/키워드: Liquid Mean Velocity

검색결과 139건 처리시간 0.027초

송풍형 로터리 버너의 특성 연구 (A study on the Characteristics of the Blowing type Rotary Burner)

  • 윤석주;최영하;김경훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.303-306
    • /
    • 2002
  • Liquid atomization by means of a spinning cup is widely used as a device for combustion, in cooling and spray drying. In this study, the blowing type rotary atomizer was experimental carried out the investigations on the characteristics of the blowing type rotary atomizer which is an air flow energy of blower instead of an electric motor most commonly used to a driven energy. The analysis on the rotary cup speed, air velocity with the blower conditions was performed and also the drop size was measured using LDPA. It was tried to analyzed on air-nozzle size and liquid flowrate as the result. It was found that the increase of the relative velocity between liquid and air improve significantly atomization liquid, and decrease of the liquid flowrate improved the maximum drop size though the mean drop size is really the same.

  • PDF

Microscopic Spray Characteristics in the Effervescent Atomizer with Two Aerator Tubes

  • Kim, Hyung-Gon;Toshiaki Yano;Song, Kyu-Keun;Torii Shuichi
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1661-1667
    • /
    • 2004
  • An experimental study is performed on atomization characteristics and stable operating conditions for the injection of high viscous waste vegetable oil using an effervescent atomizer with 2 aerator tubes. Consideration is given to the effects of ALR and liquid viscosity on the velocity and mean diameter of the injected droplet. It is found that (i) as ALR increases, the axial velocity of the droplet is increased, while half-velocity width and SMD are decreased regardless of the change in liquid viscosities, (ii) the rate of fine drop distribution occupied in the total spray field is increased with an increase in ALR, and (iii) the effect of viscosity on the atomization characteristics is minor. Consequently, it is expected that the effervescent atomizer will exhibit an excellent atomization performance at the high ALR condition, regardless of liquid viscosities.

동축형 인젝터의 미립화 특성 (Atomization Characteristics of shear coaxial twin fluid injector)

  • 한재섭;강경택;김유;김선진
    • 한국분무공학회지
    • /
    • 제5권4호
    • /
    • pp.40-46
    • /
    • 2000
  • To understand the basic the structure of the spray field and to obtain the initial conditions for computational models for shear coaxial twin-fluid injectors. the atomization characteristics under different flow and geometric conditions were examined. The spray characteristics such as SMD, mean axial and radial velocities, Dia. of droplets and volume flux with a P.D.P.A. Water and nitrogen gas under atmospheric conditions were used as a test fluids. The drops produced by shear coaxial injectors continue to disintegrate along the spray axis and decrease their sizes. SMD was the maximum at the spray center of spray and decreased with increasing radial distance. The results of this parametric study showed that SMD decreased with increasing gas injection velocity as well as with decreasing liquid injection mass flow rate, The relative velocity between gas and liquid flow played a significant role resulted in decreasing SMD and in spreading the spray. Recessing the liquid orifice resulted decreasing SMD and a spreading the spray. Recess of liquid orifice by 5.0mm showed best atomization characteristics in this experiment. Although drop diameter changes, shear coaxial injector sprays had constant velocity and exhibited a high degree of radial symmetry.

  • PDF

고분자물질 첨가에 의한 유동특성에 관한 연구 (A Study on the Characteristics of Flow with Polymer Additives)

  • 차경옥;김재근
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.176-186
    • /
    • 1996
  • The phenomena of drag reduction using small quantities of a liner macromolecules has attracted the attention of many experimental investigations. On the other hand drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to flow with cavitation which occurs pump impellers. But the research on dragreduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction, mean liquid velocity and turbulent intensity whether polymer additives a horizontal single and two phase system or not. Flow pattern of air-water two phase flow was classified by electrical conductivity probe signal. Velocities and turbulent intensities of signal were measured simultaneously with a Hot-film anemometer.

  • PDF

가솔린 직분식 엔진 인젝터의 연료 분무 미립화 특성 (Atomization Characteristics of Fuel Spray in Fuel Injector in Gasoline Direct-Injection Engine)

  • 이창식;이기형;최수천;권상일
    • 한국분무공학회지
    • /
    • 제4권2호
    • /
    • pp.33-39
    • /
    • 1999
  • This paper presents the spray atomization characteristics of the high-pressure gasoline injector for the direct-injection gasoline engine. The gasoline sprays of the injector were minted into a pressurized spray chamber with a optical access at various ambient pressures. The atomization characteristics of fuel spray such as mean diameter, mean velocity of droplet were measured by the phase Doppler particle analyzer system. In order to investigate the effect of fuel injection pressure on the quantitative characteristics of spray, the global visualization and experiment of particle measurement in the fuel spray were investigated at 3, 5 and 7 MPa of injection pressure under different ambient pressure in the spray chamber. Based on the results of this work, the fuel injection pressure of fuel injector in gasoline direct-injection engine have influence upon distribution of the mean velocity and droplet size of fuel spray. Also, the influence of injection pressure on the velocity distribution at various measuring location were investigated.

  • PDF

인젝터 통전기간이 바이오디젤 연료 미립화에 미치는 영향 (Effect of Injector Energizing Duration on the Atomization Characteristics of Biodiesel Fuel)

  • 서현규;박수한;이창식
    • 한국분무공학회지
    • /
    • 제12권2호
    • /
    • pp.108-114
    • /
    • 2007
  • This study investigates the influence of energizing duration on the fuel atomization characteristics of biodiesel injected through a high pressure common-rail injector. In order to analyze the effect of energizing duration on the fuel injection rate performance, the injection rate of biodiesel fuel is obtained from the pressure variation in the tube filled with fuel in injection measuring system. On the other hand, the atomization characteristics of biodiesel was measured and compared in terms of Sauter mean diameter(SMD), arithmetic mean diameter(AMD), droplet mean velocity, and detected droplets number by applying a phase Doppler particle analyzer(PDPA). It was revealed that the injection mass and maximum injection rate increase with increase of the energizing duration. Moreover, the increase of energizing duration improves the atomization performance of biodiesel fuel because it induces higher droplets momentum and velocity.

  • PDF

Spray Characteristics of the Rocket Oxidizer-rich Preburner Injection System

  • Yang, Joon-Ho;Choi, Seong-Man;Han, Young-Min
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.255-259
    • /
    • 2008
  • This paper presents the spray characteristics of the oxidizer rich preburner injector which can be used in the high-thrust rocket system. We designed the basic shape of the liquid-liquid coaxial swirl injector for the rocket oxidizer rich preburner injection system. To understand the spray angle variation with the high pressure environment, the spray visualization in the high pressure chamber was preformed. Also we measured the droplet velocity, the Sauter Mean Diameter(SMD), the volume flux and the number density with the PDPA system by using water in atmospheric pressure. The results show that the spray angle is reduced by increasing ambient pressure and maximum droplet velocity is shown from a nozzle tip and then the droplet velocity decreases as a spray moves to the downstream. The SMD decreases on the axial distance from 20 mm to 50 mm but it increases over 50 mm. That is due to the increasing number of collision with each droplet and interaction with ambient air on going downstream direction.

  • PDF

가솔린 송유관에서의 수액적 거동 특성 (Characteristics of Water Droplets in Gasoline Pipe Flow)

  • 김정헌;김승규;배충식;신동현
    • 한국분무공학회지
    • /
    • 제6권1호
    • /
    • pp.18-24
    • /
    • 2001
  • Liquid fossil fuel contaminated by water can cause trouble in the combustion processes and affect the endurance of a combustion system. Using an optical sensor to monitor the water content instantaneously in a fuel pipeline is an effective means of controlling the fuel quality in a combustion system. In two component liquid flows of oil and water, the flow pattern and characteristics of water droplets are changed with various flow conditions. Additionally, the light scattering of the optical sensor measuring the water content is also dependent on the flow patterns and droplet characteristics. Therefore, it is important to investigate the detailed behavior of water droplets in the pipeline of the fuel transportation system. In this study, the flow patterns and characteristics of water droplets in the turbulent pipe flow of two component liquids of gasoline and water were investigated using optical measurements. The dispersion of water droplets in the gasoline flow was visualized, and the size and velocity distributions of water droplets were simultaneously measured by the phase Doppler technique. The Reynolds number of the gasoline pipe flow varied in the range of $4{\times}10^{4}\;to\;1{\times}10^{3}$, and the water content varied in the range of 50 ppm to 300 ppm. The water droplets were spherical and dispersed homogeneously in all variables of this experiment. The velocity of water droplets was not dependent on the droplet size and the mean velocity of droplets was equal to that of the gasoline flow. The mean diameter of water droplets decreased and the number density increased with the Reynolds number of the gasoline flow.

  • PDF

Molecular Dynamics Simulation Studies of Physico Chemical Properties of Liquid Pentane Isomers

  • 이승구;이송희
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권8호
    • /
    • pp.897-904
    • /
    • 1999
  • We have presented the thermodynamic, structural and dynamic properties of liquid pentane isomers - normal pentane, isopentane, and neopentane - using an expanded collapsed atomic model. The thermodynamic properties show that the intermolecular interactions become weaker as the molecular shape becomes more nearly spherical and the surface area decreases with branching. The structural properties are well predicted from the site-site radial, the average end-to-end distance, and the root-mean-squared radius of gyration distribution func-tions. The dynamic properties are obtained from the time correlation functions - the mean square displacement (MSD), the velocity auto-correlation (VAC), the cosine (CAC), the stress (SAC), the pressure (PAC), and the heat flux auto-correlation (HFAC) functions - of liquid pentane isomers. Two self-diffusion coefficients of liquid pentane isomers calculated from the MSD's via the Einstein equation and the VAC's via the Green-Kubo relation show the same trend but do not coincide with the branching effect on self-diffusion. The rotational re-laxation time of liquid pentane isomers obtained from the CAC's decreases monotonously as branching increases. Two kinds of viscosities of liquid pentane isomers calculated from the SAC and PAC functions via the Green-Kubo relation have the same trend compared with the experimental results. The thermal conductivity calculated from the HFAC increases as branching increases.

가스터빈 연소기용 대향류 선회기의 분무 특성 (Spray Characteristics of a Pilot Nozzle in a Counter-Swirl Type Gas Turbine Combustor)

  • 고영성;김명환;김동진;민대기;정석호
    • 한국분무공학회지
    • /
    • 제1권2호
    • /
    • pp.42-49
    • /
    • 1996
  • The structure of sprays from a simplex type pilot nozzle atomizer is studied experimentally by measuring velocities, Sauter mean diameter, and number density. Interaction of the spray with gas-phase flow field generated from a 1 MW range industrial gas turbine combustor adopt ing a counter-swirler is investigated. Various spray behaviors are reported. Especially interest ing characteristics are the tangential motion of the spray and of the spray with swirl interaction. It shows a Rankine combined vortex type of velocity characteristics, having linear velocity profile inside the inner core whole small particles exist and rapidly decreasing velocity profiles outside. Interacting spray has relatively uniform number density profiles compared to the nozzle spray itself.

  • PDF