• 제목/요약/키워드: Liquid Fuel Film

검색결과 72건 처리시간 0.028초

가솔린 기관 공연비 제어를 위한 흡기포트 내의 연료액막 모델링 (Modeling of Liquid Fuel Behavior to Control Air/Fuel Ratio in the Intake Port of SI Engines)

  • 조훈;민경덕;황승환;이종화
    • 대한기계학회논문집B
    • /
    • 제24권4호
    • /
    • pp.512-518
    • /
    • 2000
  • A wall fuel-film flow model is developed to predict the effect of a wall-fuel-film on air-fuel ratio in an SI engine in transient conditions. Fuel redistribution in the intake port resulting from charge backflow and a simple liquid fuel behavior in the cylinder are included in this model. Liquid fuel film flow is calculated of every crank angle degree using the instantaneous air flow rate. The model is validated by comparing the calculated results and corresponding engine experiment results of a commercial 4 cylinder DOHC engine. The predicted results match well with the experimental results. To maintain the constant air-fuel ratio during transient operation. the fuel injection rate control can be obtained from the simulation result.

레이저 유도 형광법을 이용한 가솔린 엔진의 실린더 벽면에 존재하는 연료액막 가시화 (Measurement of Liquid Fuel Film on the Cylinder Liner in an SI Engine Using an LIF Technique)

  • 조훈;민경덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.25-30
    • /
    • 2001
  • The liquid fuel film on the cylinder liner is believed to be a major source of engine-out hydrocarbon emissions in SI engines, especially during cold start and warm-up period. Quantifying the liquid fuel film on the cylinder liner is essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to quantify liquid fuel film on the quartz liner in an SI engine test rig. The visualization was based on laser-induced fluorescence and total reflection. Using a quartz liner and a special lens, only the liquid fuel on the liner was visualized. The calibration technique was developed to quantify the fluorescence signal with the thickness gage and the calibration device. The fluorescence intensity increases linearly with increase in the fuel film thickness on the quartz liner. Using this technique, the distribution of the fuel film thickness on the cylinder liner was measured quantitatively for different valve lifts and injected fuel mass in the test rig.

  • PDF

가시화를 이용한 가솔린 엔진의 실린더 벽면에서의 연료액막 거동 분석 (Investigation of the Liquid Fuel Film Behavior on the Cylinder Liner in an SI Engine)

  • 조훈;황승환;이종화;민경덕
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1370-1376
    • /
    • 2003
  • The investigation of liquid fuel film on the cylinder liner is an essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to investigate the liquid fuel film on the quartz liner in the optical engine. For this, the optical engine with hydraulic system was designed based on the commercial SI engine. The visualization was based on the laser-induced fluorescence with total reflection technique. Using a quartz liner and a special lens, only the liquid fuel film on the liner was visualized. With using this technique, the distribution of the fuel film on the cylinder liner was measured for different engine conditions and injection timing in the optical engine.

모델에 의한 흡배관내 연료유동의 거동에 관한 실험염구 (An experimental study on the behavior of fuel flow in intake manifold by the model)

  • 박경석
    • 오토저널
    • /
    • 제5권3호
    • /
    • pp.33-44
    • /
    • 1983
  • This paper deals with the experimental study on the behavior of fuel (methanol) in intake manifold by using the basic apparatus which is manufactured the visible straight tube type model. In this study, the new device for liquid film thickness measurement and vaporization rate measurement are introduced to investigate the variation of liquid film thickness along the intake manifold and to observe the effect of vaporization of injected fuel. the results are summarized as follows: 1) The vaporization rate increases in proportion to decreasing of throttle valve angle and growing air fuel ratio. 2) The liquid film thickness along the intake manifold is mostly independent for the throttle valve angle in low air velocity and then affected in high air velocity, but the distribution of the liquid film thickness on circumferential position almost constant in the region of 300mm down stream from carburetor. 3) The mean liquid film thickness is 0.04 - 0.18mm in case of methanol in the region of air velocity Va = 12m/s - 55m/s and decreases with decreasing the throttle valve angle.

  • PDF

다점 분사식 인젝터의 분무 및 벽류 생성 과정에 관한 연구 (A Study on the Spray and Fuel-Film Formation Mechanism of MPI Injector)

  • 이기형;이창식;김봉규;성백규
    • 한국분무공학회지
    • /
    • 제1권2호
    • /
    • pp.33-41
    • /
    • 1996
  • Mixture formation is one of the important factors to improve combustion performance of MPI gasoline engines. This is affected by spray and atomization characteristics of injector. Especially, in the case of EGI system, air-fuel mixing period is too short and formed a lot of fuel-film in the intake manifold and cylinder wall. This fuel-film is not burnt in cylinder, it is exhausted in the form of HC emission. In this paper, spray characteristics such as size distributions, SMD, and spray angle are measured by PMAS, and the fuel-film measuring device is developed specially. Using this device, the amount and distribution of fuel-film which flows into through valve can be measured Quantitatively. As the result of these experiments, the information of optimal spray characteristics and injection condition that minimize the fuel-film can be built up.

  • PDF

전자 제어식 가솔린 엔진의 벽류 생성 요인에 관한 연구 (A Study on the Factors of Fuel-Film Formation in an EGI Gasoline Engine)

  • 김봉규;이기형;이창식
    • 대한기계학회논문집B
    • /
    • 제22권11호
    • /
    • pp.1530-1537
    • /
    • 1998
  • Mixture formation is one of the significant factors to improve combustion performance of an spark ignition engine. This is affected by spray and atomization characteristics of injector. In the case of EGI system, air-fuel mixing period is so short that a lot of fuel-film and liquid-fuel flow into cylinder. Since this fuel-film is not burnt perfectly in cylinder, it is exhausted in the form of HC emission. In this paper, three measurement techniques were utilized to measure spray characteristics and the amount of fuel-film in the cylinder. At first, PMAS was used to measure the spray characteristics such as size distributions, SMD, and spray angle. Secondly the amount and distribution of fuel-film which flow into through intake valve could be measured quantitatively using the fuel-film measuring device. And lastly, by optical fiber type spark plug used to detect the diffusion flame, the amount of unburned HC was measured. As the result of these experiments, the information of optimal spray characteristics and injection condition to minimize fuel-film could be built up.

Prefilming air blast 연료 노즐의 다상유동 및 반응 유동장 수치해석 (CFD simulation of a prefilming air blast fuel nozzle)

  • 정승채;김신현;박희호;류시양
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.251-253
    • /
    • 2017
  • Prefilming air blast 연료노즐의 다상유동 해석을 수행하였다. 연료가 미립화되는 과정을 관찰하였으며 liquid film의 두께와 속도를 계산하였다. Slot에서 분사된 연료는 prefilmer surface에서 얇은 액막을 형성한 후 연료노즐 lip에서 액적으로 분열되었다. 또한 계산된 liquid film의 두께와 속도를 경계조건으로 하여 반응유동장 해석을 수행하였다. 분사된 액적은 venturi throat를 지나면서 기화되었고 연료노즐 하류에 반응영역이 형성되어 안정적으로 보염이 이루어졌다.

  • PDF

연료 온도 변화에 따른 평판 충돌 액적의 거동에 관한 연구 (Behavior of Impinging Droplet on a Solid Surface for the Variation of Fuel Temperature)

  • 이동조;김호영;정진택
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.167-173
    • /
    • 2003
  • An experimental study on the behavior of droplets impinging on a solid flat surface was carried out in the present study. Breakup of a liquid droplet impinging on a solid surface has been investigated experimentally for various fuels with different properties. The fuel temperature and incident angle were chosen as major parameters. And fuel temperature and incident angle varied in the range from $-20^{\circ}C$ to $30^{\circ}C$ and from $30^{\circ}$ to $60^{\circ}$, respectively, were investigated. It was found that the variation of fuel temperature influences upon droplet mean diameter which were bounced out from the solid surface. As the increases of incident angle, the break-out mass flow rate increases. This causes the decrease of liquid film flow rate. The larger incident angle gives less liquid film flow rate.

  • PDF

EFI 인젝터에 의한 연료분무의 벽면충돌 특성 (Wall Impingement Phenomena of a Fuel Spray Injected by an EFI Injector)

  • 김영일;신정아륭
    • 한국분무공학회지
    • /
    • 제9권1호
    • /
    • pp.37-42
    • /
    • 2004
  • In a port fuel injection system of engine, a large part of fuel injected into an intake port adheres on its wall and inlet valve. Consequently, the wall impinging spray interaction might occur the generation of several harmful phenomena. There are uncontrollable mixture formation, an accidental backfire and unburned hydrocarbons. Therefore, it is important to analyze the fuel behavior during the spray-wall interaction. In this study, splash characteristics of impingement and reflecting or scattering behavior of droplets of fuel injected from EFI nozzle were studied experimentally. A test fuel used is LAWS and its physical characteristics are similar to the conventional gasoline except for the ignition point. Since the liquid film formed immediately after impinging on an impingement plate is unstable, it is easy to cause secondary disintegration. In addition, when the intermittently impingement on the impingement plate with LAWS, the splash ratio is around 0.6. If an injection period becomes longer, liquid film will become thick and the splash ratio will fall bout 10 percent. On the other hand, when the injection period of an intermittent spray is long, the same time lapse as a continuous spray is shown.

  • PDF

고압스월분무 액막유동의 초기 발달과정에 대한 연구 (The Initial Film Flow Development of the High-Pressure Swirl Spray)

  • 문석수;;최재준;배충식
    • 한국분무공학회지
    • /
    • 제11권4호
    • /
    • pp.212-219
    • /
    • 2006
  • The initial film flow development of the high-pressure swirl spray was investigated at different injector operating conditions to analyze film flow development and to provide the input data for the modeling works. This result can be also useful to verify the previously simulated results. The initial flow conditions such as liquid film thickness, flow angle and flow divergence are obtained by visualizing the inside and near the nozzle flow with a microscopic imaging system. The visualized images are quantified using an image processing tool. From the information of liquid film thickness and flow angle, the initial axial and tangential velocity and the swirl number of the swirl spray are successfully determined at various operating conditions. The experimental results showed that the initial liquid film thickness, flow angle and flow divergence are remained constant when the injection pressure is increased. However, initial film conditions are severely changed when the fuel temperature is increased. The swirl number remained constant when the injection pressure is increased while it showed increased value at high fuel temperature condition.

  • PDF