• Title/Summary/Keyword: Liquid Film Fuel

검색결과 72건 처리시간 0.025초

액체 및 기체연료 엔진의 공연비 제어특성에 관한 비교 연구 (A Comparative Study on A/F Control Characteristics of Liquid and Gaseous Fueled Engines)

  • 심한섭;신규철;송창섭;선우명호
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.106-114
    • /
    • 2002
  • In this study, the air-fuel ratio(A/F) control characteristics of a liquid and a gaseous fueled engine are investigated. Engine models far both the liquid and the gaseous fueled engine are developed to compare the characteristics of fuel delivery into the cylinder, and the performances of the models are evaluated using the simulation and experiment. The simulation and experimental results show that the gaseous fueled engine has better control performance than that of the liquid fueled engine in terms of the air-fuel ratio control. This study could be used to develop air-fuel ratio control schemes for both the liquid and the gaseous fueled engine.

초음파 진동판의 표면조도에 따른 분무특성에 관한 연구 (Characterization of Sprays used Ultrasonic Vibrant Plate with the Surface roughness)

  • 이준백;전인곤;전흥신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.732-737
    • /
    • 2000
  • The purpose of this study is to compare the SMD(Sauter mean diameter) with different vibrant plates. Each vibrant plates have different surface roughness. Also liquid film thickness are measured for explanation how to concern atomization. Ultrasonic waves is used for vibration. Immersion liquid method is used for the measure of SMD and also liquid film thickness is measured using of point needle method. Distilled water and gasoline fuel are used to liquids. Supplied liquid flow rates are $18{\sim}296cc/min$. Centerline average roughness of vibrant plates are 0.5, 2.0, 4.7, $9.5\;{\mu}m$ and diameter of vibrant plate is 60mm. In result, good atomization of liquid is obtained in widen flow rates. The mean droplet size is increased in orders of 4.7, 2.0. 9.5, $0.5\;{\mu}m$ surface roughness. Distilled water has a big mean droplet size than gasoline fuel in low flow rate. Above the 78cc/min flow rates, distilled water has a small mean droplet size than gasoline fuel. Liquid films changes are measured with ultrasonic power. Also, cavitation effect on sprays is observed.

  • PDF

불포화 토양내에서 가스상 오존 이동특성에 대한 Multiphase liquids의 영향

  • 정해룡;최희철
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.124-127
    • /
    • 2003
  • Laboratory scale experiments on in-situ ozonation were carried out to delineate the effects of liquid phases, such as soil water and nonaqeous phase liquid (NAPL) on the transport of gaseous ozone in unsaturated soil. Soil water enhanced the transport of ozone due to water film effect, which prevent direct reaction between soil particles and gaseous ozone, and increased water content reduced the breakthrough time of ozone because of increased average linear velocity of ozone and decreased air-water interface area. Diesel fuel as NAPL also played a similar role with water film, so the breakthrough time of ozone in diesel-contaminated soil was significantly reduced compared with uncontaminated soil. However, ozone breakthrough time was retarded with increased diesel concentration, because of high reactivity of diesel fuel with ozone. In multiphase liquid system of unsaturated soil, the ozone transport was mainly Influenced by nonwetting fluid, diesel fuel in this study.

  • PDF

Development of Plate-type Fine Atomizing Nozzles for SI Engines with Intake-port Fuel Injection

  • Suzuki, Takashi;Tani, Yasuhide
    • 한국분무공학회지
    • /
    • 제12권1호
    • /
    • pp.45-57
    • /
    • 2007
  • This paper presents both experimental and numerical studies regarding nozzles used for the SI engine application, particularly for the intake-port fuel injection type. The atomization mechanism of the multi-hole plate nozzle was investigated experimentally. It was found that the nozzle design added turbulence into the liquid-film jet and the jet disintegrated rapidly. Based on the results, various plate types for the nozzle were developed and tested; six hole nozzle for liquid jet interaction, plate-type nozzle with flat duct channel, and the simpler structured nozzle. The spray characteristics of the prototype nozzles were examined experimentally while the internal flow of the nozzle was investigated computationally. It was shown that turbulent liquid-film was injected and atomization quality was improved by controlling the internal flow condition of the plate-type nozzle.

  • PDF

막냉각 효과를 고려한 액체로켓 엔진의 연소 특성에 관한 연구 (A Numerical Study on the Combustion Characteristics in a Liquid Rocket Engine with Film Cooling Effect)

  • 변도영;김만영;백승욱
    • 한국항공우주학회지
    • /
    • 제31권8호
    • /
    • pp.69-76
    • /
    • 2003
  • 액체로켓 연소기 내의 막냉각 특성 분석을 위한 비회체 분무연소에 대한 수치해석을 수행하였다. 막냉각 연료의 특성에 따른 연소기 벽면의 온도변화를 살펴보기 위하여 막냉각용 연료의 유랑, 막냉각용 액적의 직경, 그리고 공기/연료 혼합비를 매개변수로 한 수치해석을 수행하여 연소기 벽면의 온도는 막냉각용 연료 액적 직경의 변화에는 큰 영향을 받지 않지만 막냉각용 연료 유량 및 공기/연료 혼합비에 영향을 받고 있음을 확인하였다. 또한, 추진기관 벽면으로 전달되는 전도 및 복사열유속을 고찰함으로서 이러한 액체 추진기관의 연소특성을 이해하기 위해서는 열복사 및 물성치의 적절한 고찰이 필요함을 지적하였다.

포트분사식 가솔린엔진에서 연료분사전략이 Wall Film 생성에 미치는 영향 연구 (Effects of Fuel Injection Strategies on Wall Film Formation at Port Injection Gasoline Engine)

  • 이지영;최종휘;장지환;박성욱
    • 한국분무공학회지
    • /
    • 제23권1호
    • /
    • pp.36-41
    • /
    • 2018
  • Fuel wall film effects power output and cycle deviation by changing the amount of fuel flowing into cylinder in PFI gasoline engines. Reduction of wall film can reduce fuel consumption and improve combustion stability. In this research, the effects of injection strategies including injection pressure and dual injection system is investigated for reducing wall film formation. The CONVERGE software is used for numerical analysis tool and O'Rourke film splash model was used for wall film prediction model. Compared with the reference case wall film decreased with increase of injection pressures, and the film formation reduced when the dual injection system was used.

4기통 전기점화기관의 혼합기 불균일화가 기관성능에 미치는 영향 (Effect of Non-Uniform Mixture on the 4 Cylinder S.I.Engine Performance)

  • 김물시;진성호;박경석;이용길
    • 한국자동차공학회논문집
    • /
    • 제2권4호
    • /
    • pp.72-79
    • /
    • 1994
  • In an automotive spark ignition, it is important to form the proper mixture(air/fuel) on each driving condition for developing the stabilizing combustion and exhaust characteristics. Since most of supply fuel is attached on the inside wall of the intake manifold for unadequate atomization by fuel injection system, it brings a bad effect on combustion and exhaust caused by nonuniformity of fuel distribution to each cylinder and mixture variation. Also it affects engine performance variation and causes noises and vibration. In this study, we verified the effect of the mixture variation which is caused by fuel liquid film in an intake manifold on combustion characteristics and engine performance.

  • PDF

다기통 전기점화기관의 혼합기 불균일화가 사이클 변동에 미치는 영향 (I) (Effect of Non-Uniform Mixture on Cycle Fluctuation of Multi-Cylinder Spark Ignition Engine(I))

  • 송재학;이용길;박경석;양옥룡
    • 대한기계학회논문집
    • /
    • 제16권9호
    • /
    • pp.1736-1743
    • /
    • 1992
  • 본 연구에서는 기화기부착 4행정 4기통 전기점화기관을 사용하여 흡기관내 액 막흐름에 의한 연료의 불균일화가 기관의 연소특성과 배기특성에 미치는 영향을 규명 하는데 궁극적인 목적을 두고 우선, 연소특성을 해석하기 위하여 비교적 고가인 연소 해석 시스템을 개발하는데 1차적인 목적으로 하였으며, 시험제작한 연소해석 시스템으 로 액막흐름의 가시화 및 배기가스 농도측정과 지압선도 해석을 행하여 구조적으로 대 칭인 1번과 4번 실린더의 연소특성과 배기특성을 비교 검토하였다.

다기통 전기점화기관의 균질혼합기 공급에 관한 연구 - 연소특성에 미치는 영향 - (A Study on Homogeneous Mixture Supply in a Multi-Cylinder Spark Ignition Engine - Effect on Combustion Characteristics -)

  • 김물시;이용길;박경석
    • 대한기계학회논문집
    • /
    • 제18권8호
    • /
    • pp.2194-2200
    • /
    • 1994
  • In an automotive spark ignition engine, it is important to form the proper mixture (air/fuel) on each driving condition for developing the stabilizing combustion and exhaust characteristics. Since most of supply fuel si attached on the inside wall of the intake manifold for unadequate nonuniformity of fuel distribution to each cylinder and mixture variation. Also it affects engine performance variation and causes noises and vibration. In this study, we verified the effect of the mixture variation which is caused by fuel liquid film in the intake manifold on combustion characteristics and engine performance.

가솔린 엔진 흡기 포트내의 연료 거동 및 벽류 생성 가시화 방법에 관한 연구 (A Study on the Visualization Technique for Fuel Behavior and Fuel-Film Formation in the Intake Port of a S.I. Engine)

  • 김봉규;이기형;이창식
    • 한국분무공학회지
    • /
    • 제2권4호
    • /
    • pp.15-21
    • /
    • 1997
  • In a gasoline engine with port injection system, the fuel behavior in the intake port has significant influence on the HC emission and the precise A/F control. That is to say, it is inevitable that the injection direction and behavior of fuel injected in the intake port have an effect on the generation of unburned HC within a cylinder. In this paper, we visualized fuel behavior in the intake port using micro CCD camera synchronized with the stroboscope and investigated the fuel-film characteristics formed at the wall of intake port by processing image captured with VCR in the transparent intake port made of acryl. Using these measuring methods, it was found that fuel behavior and the formation of fuel-film in the intake port could be evaluated qualitatively. And results obtained by these methods show that 2-spray injector minimizes the fuel-film formed in the intake port of a DOHC gasoline engine.

  • PDF