• 제목/요약/키워드: Liquid Film

검색결과 1,323건 처리시간 0.024초

마이크로 채널내 박막영역에서의 증발 모델링 (Evaporative Modeling in n Thin Film Region of Micro-Channel)

  • 박경우;노관중;이관수
    • 대한기계학회논문집B
    • /
    • 제27권1호
    • /
    • pp.17-24
    • /
    • 2003
  • A mathematical model of the hydrodynamic and heat transfer performances of two-phase flow (gas-liquid) in thin film region of micro channel is proposed. For the formulation of modeling, the flow of the vapor phase and the shear stress at the liquid-vapor interface are considered. In this work, disjoining pressure and capillary force which drive the liquid flow at the liquid-vapor interface in thin film region are adopted also. Using the model, the effects of the variations of channel height and heat flux on the flow and heat transfer characteristics are investigated. Results show that the influence of variation of vapor pressure on the liquid film flow is not negligible. The heat flux in thin-film region is the most important operation factor of micro cooler system.

유동고온공기에 의해 유인되는 수평평판 액막류의 열전달에 관한 실험적 연구 (An Experimental study on Heat Transfer Characteristics of Horizontal Liquid Film Driven by Hot Wind)

  • 박재현;박상균;윤석훈;오철;김명환
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2002년도 춘계학술대회논문집
    • /
    • pp.83-88
    • /
    • 2002
  • This study is to provide the experimental information and basic data on heat transfer characteristics of horizontal liquid film driven by hot wind. Heat transfer characteristics of the liquid film in the rectangular duct was observed and the change of film temperature was measured. The experiments were carried out for a variety of parameter, such as feed water rate and velocity and temperature of feed air. From the observation and the measurement the general understanding of heat transfer characteristics for liquid film driven by hot wind was provided.

  • PDF

ESTIMATION OF LOCAL LIQUID FILM THICKNESS IN TWO-PHASE ANNULAR FLOW

  • Lee, Bo-An;Yun, Byong-Jo;Kim, Kyung-Youn;Kim, Sin
    • Nuclear Engineering and Technology
    • /
    • 제44권1호
    • /
    • pp.71-78
    • /
    • 2012
  • In many semi-empirical analyses of flow boiling heat transfer, an annular flow is often assumed as a model flow and the local liquid film thickness is a key parameter in the analysis. This work considers a simple electrical conductance technique to estimate the local liquid film thickness in two-phase annular flows. In this approach, many electrodes are mounted flush with the inner wall of the pipe. Voltage differences between two neighboring electrodes for concentric annular flows with various liquid film thicknesses are obtained before the main experiments and logged in a look-up table. For an actual application in the annual flow, voltage differences of neighboring electrodes are measured and then corresponding local film thicknesses are determined by the interpolation of the look-up table. Even though the proposed technique is quite simple and straightforward, the numerical and static phantom experiments support its usefulness.

고정밀 2상유동 액막두께 측정을 위한 연성회로기판 기반 3-전극 센서 개발 (Development of Three-ring Conductance Sensor based on Flexible Printed Circuit Board for Measuring Liquid Film thickness in Two-phase Flow with High Resolution)

  • 이규병;김종록;어동진;박군철;조형규
    • 센서학회지
    • /
    • 제25권1호
    • /
    • pp.57-64
    • /
    • 2016
  • To understand a two-phase flow, a liquid film thickness is one of the important factors. A lot of researches have been performed to measure liquid film thickness with various approaches. Recently, an electrical conductance method which uses the conductivity of the liquid film has been widely applied on measuring the liquid film thickness. Though the electrical method has an advantage in high spatial resolution, as the conductivity of liquid can be affected by its temperature variation, the conventional electrical conductance methods have a limitation in being applied on varying temperature conditions where a heat transfer is involved. The purpose of this study is to develop a three-ring liquid film sensor that overcomes the limitation of the conventional method. The three-ring conductance method can measure the film thickness regardless of temperature variation by compensating the change of liquid conductivity. Considering its application on a wide range of conditions such as high temperature or curved surfaces, the sensor was fabricated on flexible printed circuit board (FPCB) in this study. This paper presents the concept of the measurement method, design procedure, prototype sensor fabrication and calibration results.

레이저 유도 형광법을 이용한 가솔린 엔진의 실린더 벽면에 존재하는 연료액막 가시화 (Measurement of Liquid Fuel Film on the Cylinder Liner in an SI Engine Using an LIF Technique)

  • 조훈;민경덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.25-30
    • /
    • 2001
  • The liquid fuel film on the cylinder liner is believed to be a major source of engine-out hydrocarbon emissions in SI engines, especially during cold start and warm-up period. Quantifying the liquid fuel film on the cylinder liner is essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to quantify liquid fuel film on the quartz liner in an SI engine test rig. The visualization was based on laser-induced fluorescence and total reflection. Using a quartz liner and a special lens, only the liquid fuel on the liner was visualized. The calibration technique was developed to quantify the fluorescence signal with the thickness gage and the calibration device. The fluorescence intensity increases linearly with increase in the fuel film thickness on the quartz liner. Using this technique, the distribution of the fuel film thickness on the cylinder liner was measured quantitatively for different valve lifts and injected fuel mass in the test rig.

  • PDF

Numerical Analysis of Damping Effect of Liquid Film on Material in High Speed Liquid Droplet Impingement

  • Sasaki, Hirotoshi;Ochiai, Naoya;Iga, Yuka
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권1호
    • /
    • pp.57-65
    • /
    • 2016
  • By high speed Liquid Droplet Impingement (LDI) on material, fluid systems are seriously damaged, therefore, it is important for the solution of the erosion problem of fluid systems to consider the effect of material in LDI. In this study, by using an in-house fluid/material two-way coupled method which considers reflection and transmission of pressure, stress and velocity on the fluid/material interface, high-speed LDI on wet/dry material surface is simulated. As a result, in the case of LDI on wet surface, maximum equivalent stress are less than those of dry surface due to damping effect of liquid film. Empirical formula of the damping effect function is formulated with the fluid factors of LDI, which are impingement velocity, droplet diameter and thickness of liquid film on material surface.

탄성 유체 윤활에서의 액정의 마찰 특성 및 유막두께 (Frictional Behavior and Film Thickness of Some Liquid Crystals in Elastohydrodynamic Lubrication)

  • 이희성
    • Tribology and Lubricants
    • /
    • 제18권4호
    • /
    • pp.255-259
    • /
    • 2002
  • The tribological properties of eight different liquid crystals were investigated in a concentrated point contact device and a ball-on-flat contact. For comparison, the same tests were also performed with commercial greases and the corresponding base oils. Under the fully flooded conditions studied, liquid crystals in a concentrated point contact showed lower friction than commercial greases and greater film thickness dependence on rolling speed than grease base oils or greases. Test results also showed that the film thickness and friction were little influenced by the composition of the examined liquid crystals.

Characterization of Thin Liquid Films Using Molecular Dynamics Simulation

  • Lee, Jaeil;Park, Seungho;Ohmyoung Kwon;Park, Young-Ki;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1477-1484
    • /
    • 2002
  • Various characteristics of a thin liquid film in its vapor-phase are investigated using the molecular dynamics technique. Local distributions of the temperature, density, normal and tangential pressure components, and stress are calculated for various film thicknesses and temperature levels. Distributions of local stresses change considerably with respect to film thicknesses, and interracial regions on both sides of the film start to overlap with each other as the film becomes thinner. Integration of the local stresses, i.e., the surface tension, however, does not vary much regardless of the interfacial overlap. The minimum thickness of a liquid film before rupturing is estimated with respect to the calculation domain sizes and is compared with a simple theoretical relation.

수평 과냉 . 난류액막류의 막비등 열전달에 관한 연구 (Study on Film-Boiling Heat Transfer of Subcooled Turbulent Liquid Film Flow on Horizontal Plate)

  • 김영찬;서태원
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.835-842
    • /
    • 2000
  • Film boiling heat transfer of the subcooled turbulent liquid film flow on a horizontal plate was investigated by theoretical and experimental studies. In the theoretical analysis, by solving the integral energy and momentum equations analytically, some generalized expressions for Nusselt number was deduced. Next, by comparing the deduced equations with the experimental data on the turbulent film boiling heat transfer of the subcooled thin liquid film flow, the semi-empirical relation between the Nusselt number based on the modified heat transfer coefficient and the Reynolds number was obtained. The correlating equation was very similar to that of the turbulent heat transfer in a single phase flow, and it was found that the heat transfer was dissipated to increase the liquid temperature.

  • PDF

Preparation of BaTiO3 Thick Film by an Interfacial Polymerization Method

  • Iwasaki, Mitsunobu;Park, Won-Kyu
    • 한국재료학회지
    • /
    • 제17권10호
    • /
    • pp.548-554
    • /
    • 2007
  • [ $BaTiO_3$ ] thick film by an interfacial polymerization method was prepared at the liquid/liquid interface between benzyl alcohol saturated solution with the basic catalyst [diethyl amine ($NHEt_2$) or triethylamine ($NEt_3$)], and the water dissolved with $TiO_2$ and $Ba(CH_3COO)_2$. The film thickness increased gradually with an increase in diethyl amine($NHEt_2$) or triethylamine($NEt_3$) volume and the reaction time. The homogeneity of $BaTiO_3$ thick film after sintered at $600^{\circ}C$ was confirmed by EPMA analysis, which showed that both of Ba and Ti element were homogeneously distributed on the surface as well as in the perpendicular direction of the film. The thickness of $BaTiO_3$ film obtained by this process was $8.75\;{\mu}m$.