• Title/Summary/Keyword: Liquid Droplets

Search Result 424, Processing Time 0.022 seconds

A Study on the Disintegration and Spreading Behavior of Fuel-spray Emanating from a Liquid-thruster Injector by Pseudo-3D Spatial Distribution Measurement (준3차원적 공간분포 계측에 의한 액체추력기 인젝터 연료분무의 분열 및 확산 거동에 관한 연구)

  • Kim, Jin-Seok;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.5
    • /
    • pp.9-17
    • /
    • 2008
  • Pseudo-3D spatial distribution of spray droplets is investigated by using Dual-mode Phase Doppler Anemometry (DPDA) in order to examine the disintegration and spreading behavior of spray exiting from liquid-propellant thruster injector. Spray injected from nozzle orifice with length-to-diameter ratio ($L/d_o$) of 1.67 and under the injection pressure of 27.6 bar is aligned to the vertical. Vertical and horizontal mean velocities of droplets, Sauter Mean Diameter (SMD), and volumetric flux decrease as droplets travel from center/upstream toward outer region/downstream of spray. Although the distribution of spray characteristic parameters is symmetric against the geometric axis of nozzle orifice, their absolute values are asymmetric.

Deformation Behavior and Nucleation Activity of a Thermotropic Liquid­Crystalline Polymer in Poly(butylene terephthalate)-Based Composites

  • Kim Jun Young;Kang Seong Wook;Kim Seong Hun;Kim Byoung Chul;Shim Kwang Bo;Lee Jung Gyu
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.19-29
    • /
    • 2005
  • Polymer composites based on a thermotropic liquid-crystalline polymer (TLCP) and poly(butylene terephthalate) (PBT) were prepared using a melt blending process. Polymer composites consisting of bulk cheap polyester with a small quantity of expensive TLCP are of interest from a commercial perspective. The interactions between the PBT chains and the flexible poly(ethylene terephthalate) (PET) units in the TLCP phase resulted in an improvement in the compatibility of PBT/TLCP composites. TLCP droplets deformed and fragmented into smaller droplets in the PBT/TLCP composites, which resulted in TLCP fibrillation through the effective deformation of the TLCP droplets. The nucleation activities of the PBT/TLCP composites increased by adding even a small amount of the TLCP component.

Disintegration and Spreading Behavior of the Spray emanating from a Liquid-thruster Injector (액체추력기 인젝터로부터 발생하는 분무의 분열 및 확산 거동)

  • Kim, Jin-Seok;Jung, Hun;Kim, Jeong-Soo;Kim, Sung-Cho;Park, Jeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.113-116
    • /
    • 2008
  • Pseudo-3D Spatial distribution of spray droplets is investigated by using Dual-mode Phase Doppler Anemometry (DPDA) in order to examine the disintegration and spreading behavior of spray exiting from liquid-thruster injector. Spray injected from nozzle orifice with length-to-diameter ratio $(L/d_o)$ of 1.67 and at the injection pressure of 27.6 bar is aligned to the vertical. Vertical and horizontal mean velocities of droplets, Arithmetic Mean Diameter (AMD), Sauter Mean Diameter (SMD), and volumetric flux decrease as droplets travel from center/upstream toward outer region/downstream of spray.

  • PDF

Behavior of an Impinging Droplet on a Solid Surface with a Variation of Liquid Temperature (액체 온도 변화에 따른 평판 충돌 액적의 거동에 관한 연구)

  • Lee Dong Jo;Park Byung Sung;Chung Jin Taek;Kim Ho Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.330-339
    • /
    • 2005
  • An experimental study on the behavior of droplets impinging on a solid flat surface was carried out in the present study. Breakup of a liquid droplet impinging on a solid surface has been investigated experimentally for various liquids with different properties. The liquid droplet temperature and incident angle were chosen as major parameters. Liquid droplet temperature and incident angle varied in the range from $-20{\circ}C\;to\;30{\circ}C\;and\;from\;30{\circ}\;to\;60{\circ},$ respectively. It was found that the variation of droplet temperature influences upon the mean diameter and uniformity of droplets which were bounced out from the solid surface. With increase of incident angle the dispersion mass fraction increases, causing the decrease of liquid film flow rate. As the liquid temperature increases, dispersion mass fraction increases since the surface tension decreases.

A Numerical Study on Interaction and Combustion of Droplets Injected into a Combustor (연소실에 분사된 액적 간의 상호작용과 연소현상에 대한 수치적 연구)

  • Kook, J.J.;Park, S.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.17-26
    • /
    • 1999
  • Vaporization, ignition and combustion of fuel droplets in tandem array are theoretically investigated to understand the droplet interactions in combustors. Including the effects of density variation in gas-phase, internal circulation and transient liquid heating, a numerical studies are performed by changing parameters such as initial droplet temperatures, initial droplet spacings, initial Reynolds numbers, surrounding gas temperatures, and activation energies of fuel vapors. Combustion regime maps classify the droplet combustion phenomena according to the configuration and location of the flame with respect to injection Reynolds numbers and surrounding gas temperatures. In addition, it is shown that the dynamic histories of droplets and ignition delay times are dependent on droplet size ratios and initial spacings of tandem droplets.

  • PDF

Development of Digital Particle Holographic System for Measurements of the Characteristics of Spray Droplets (분무 액적 특성 계측을 위한 디지털 입자 홀로그래피 시스템의 개발)

  • Yan, Yang;Kang, Bo-Seon
    • Journal of ILASS-Korea
    • /
    • v.15 no.2
    • /
    • pp.53-60
    • /
    • 2010
  • This study presents development of digital particle holographic system and its application to spray field to measure three-dimensional velocities and sizes of spray droplets. A double exposure hologram recording system with synchronization system for time control was established and digital holograms can be recorded in a short time interval. To process recorded holograms, the correlation coefficient method was used for focal plane determination of particles. To remove noises and improve the quality of holograms and reconstructed images, the Wiener filter was adopted. The two-threshold and image segmentation methods were used in binary image transformation. For particle pairing, the match probability method was adopted. The developed system was applied to spray field and three-dimensional velocities and sizes of spray droplets were measured. The measurement results of digital holographic system were compared with those made by laser instruments, PDPA(Phase Doppler Particle Analyzer), which proved the feasibility of in-line digital particle holographic system as a good measurement tool for spray droplets.

The Effects of Initial Droplet Shape and Number Density on Modeling of Non-evaporating Diesel Sprays (디젤분무의 모델에서 액적의 형상 및 수밀도의 영향에 관한 연구)

  • Won, Y.H.
    • Journal of ILASS-Korea
    • /
    • v.7 no.2
    • /
    • pp.22-30
    • /
    • 2002
  • A number of droplet breakup models have been developed to predict the diesel spray. The capabilities of droplet deformation and breakup models such as TAB, ETAB, DDB and APTAB models are evaluated in modeling the non-evaporating diesel sprays injected into atmosphere. New methods are also suggested that take into account the non- spherical shape of droplets and the reduced drag force by the presence of neighbouring droplets. The KIVA calculations with standard ETAB, DDB, and APTAB models predict well the spray tip penetrations of the experiment, but overestimate the Sauter mean Diameter(SMD) of droplets. The calculation with non spherical droplets injected from the nozzle shows very similar results to the calculation with spherical droplets. The drag coefficient which is linearly increased with the time after start of injection during the breakup time gives the smaller SMD that agrees well with the experimental result.

  • PDF

Emulsion using Biosurfactant as Emulsifier (Biosurfactant를 이용한 유화)

  • 홍세흠;한창규;조춘구
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.25 no.1
    • /
    • pp.137-155
    • /
    • 1999
  • The o/w emulsions were prepared by lysolecithin as a biosurfactantsto to emulsify oils with squalane(SQ), liquid paraffin(LP), octylpalmitate(OP), octylstearate(OS), alkyl benzoate(AB), isostearyl benzoate(ISB). The droplets size and shape of o/w emulsions were investigated by laser light scattering, With dynamic light scattering hydrodynamic radius(Rh) of emulsion droplets was varied from 150m to 250m and critical concentration of oil In which the hydrodynamic radius(Rh) of emulsion droplets decreased and increased was found in the point of 0.5wt% oil concentration, and it was found increasing the polarity of oil deccreased the droplets, the droplets size of SQ(polar oil) were lower than SQ(nonpolar oil) With static light scattering radius of gyration(R$_{g}$) of emulusion droplets was to be calculated. From measurements of the ratio of R$_{g}$R$_{h}$ it was found that the shape of droplet of ISB, AB(polar oils) were sphere, for OP, OS(apolar oil) were oblate, for LP, SQ(nonpolar oil) were rod. The viscosity of emulsion in the form of rod was higher than that of emulsion in the form of sphere.e.e.

  • PDF

Spray Characteristics of Internal-Mixing Twin-Fluid Atomizer using Sonic Energy (음향에너지를 이용한 내부 혼합형 이유체 분사노즐의 분무특성)

  • Cho, H.K.;Kang, W.S.;Seok, J.K.;Lee, G.S.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.4 no.3
    • /
    • pp.32-41
    • /
    • 1999
  • In this research, internal-mixing twin-fluid atomizer using sonic energy is designed and manufactured. We are trying to intimate high efficiency twin-fluid atomizer to obtain good liquid atomization in the low pressure region. Define of geometric form of atomizer, characteristics of spray is influenced by position, depth and height variation of cavity resonator, variation of sound intensity and resonant sound frequency with liquid flow rate. The liquid atomization is promoted by multi-stage disintegration of mixing flow of gas with liquid and the optimum condition of position and depth of cavity resonator according to sonic energy is obtained from the condition at a=2.5mm and L=2mm. The velocity distribution of droplets shows negative value due to recirculation region at the center of axial, and as the radial direction distance is far, the velocity distribution of droplets decrease slowly after having a maximum value. However velocity and SMD show nearly uniform distribution at the down stream and as result compared to Nukiyama and Tanasawa's equation. atomization of mixing flow with air and liquid dispersing from the outlet of the nozzle is promoted by the effect of collision at the cavity resonator.

  • PDF

Non-Steady Group Combustion of Liquid Fuel Droplets (액체연료 액적군 의 비정상 집단연소)

  • 김호영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.6
    • /
    • pp.544-552
    • /
    • 1984
  • A non-steady group combustion model of a spherical droplets cloud has been developed to access the non-steady effects of collective behavior of fuel droplets on combustion characteristics and cloud structure. A system of conservation equations of droplets cloud in axisymmetric spherical coordinate was solved by numerical methods for n-Butylbenzene(C$_{10}$ / $H_{14}$) It was found that the effect of initial droplet size on combustion characteristics is dominated compare with effects of cloud size and number density of droplets. For dense droplets cloud, external group combustion mode is established during main part of cloud life time, and internal and single droplet combustion modes are simultaneously established for the dilute droplets cloud. Radius of cloud and external envelope flame are slowly decreased during main part of cloud life time, and suddenly decreased at end of combustion period.d.