• Title/Summary/Keyword: Liquid Core Length

Search Result 26, Processing Time 0.025 seconds

A Study on the Measurement of Break-up Length for the Diesel Sprays (디젤분무의 분열길이 측정에 관한 연구)

  • Jang, S.H.;Ra, J.H.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.22-28
    • /
    • 1999
  • The injected liquid does not break-up instantly after injection for diesel engine. There is some unbroken portion, which is the liquid core(The length of liquid core is called the break-up length) in the spray. If the liquid core is longer than the depth of the bowl in the small DI diesel engine, the liquid core impinges on the surface of the piston. Once the liquid core impinges on the surface, it cannot ignite or burn rapidly and thus prolongs burning time with a degradation in thermal efficiency. The break-up length of a diesel spray in a compressure vessel was measured by an electric resistance method, A voltage was applied between the nozzle and screen, bar, needle electrode inserted at various axial and radial positions into atomizing sprays. As a result, a current flows not only in the region of liquid core but also through the droplets of the spray. It is found that the break-up length measured with screen electrode is overestimated. The break-up length of the spray is found to be proportional to the square root of the density ratio of fuel and surrounding gas. The break-up length of the spray decreases as the injection pressure and the back pressure increase.

  • PDF

Quantifying Architectural Impact of Liquid Cooling for 3D Multi-Core Processors

  • Jang, Hyung-Beom;Yoon, Ik-Roh;Kim, Cheol-Hong;Shin, Seung-Won;Chung, Sung-Woo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.297-312
    • /
    • 2012
  • For future multi-core processors, 3D integration is regarded as one of the most promising techniques since it improves performance and reduces power consumption by decreasing global wire length. However, 3D integration causes serious thermal problems since the closer proximity of heat generating dies makes existing thermal hotspots more severe. Conventional air cooling schemes are not enough for 3D multi-core processors due to the limit of the heat dissipation capability. Without more efficient cooling methods such as liquid cooling, the performance of 3D multi-core processors should be degraded by dynamic thermal management. In this paper, we examine the architectural impact of cooling methods on the 3D multi-core processor to find potential benefits of liquid cooling. We first investigate the thermal behavior and compare the performance of two different cooling schemes. We also evaluate the leakage power consumption and lifetime reliability depending on the temperature in the 3D multi-core processor.

Synthesis of Three Ring Type Compounds with Fluorine and NCS Groups as Candidates for VA mode Liquid Crystal Display

  • Heo, E.Y.;Kim, Y.B.;Kim, S.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.571-574
    • /
    • 2003
  • Three ring type liquid crystalline compounds having 4-alklycyclohexyl group, 1,2-difluorobenzene and phenylisothiocyanate moieties as main skeleton were designed to have negative dielectricity. However, the compounds with 2,3,2'-trifluoro-3'-isothiocyanated biphenylcyclohexane core did not exhibit the nematic liquid crystalline phase because of two conformers by interaction of isothiocyanate and adjacent fluorine atoms. Also, 4-alkyl-2,2',3'-trifluoro-3-isothiocyanated biphenylcyclohexane core was designed expecting to have uniform conformers of isothiocyanate group. In the course of developing polyimides for VA mode LCD, we synthesized alkyl-3,5-diaminobenzene efficiently with various length of alkyl chains from commercially available di-t-butyl malonate and 3,5-dinitrobenzoyl chloride as starting material.

  • PDF

Preparation and Properties of Self-Assembled Discotic Liquid Crystals Formed by Hydrogen Bonding (수소결합에 의한 자기조립된 원반형 액정의 제조와 특성)

  • Lee, Jun Hyup
    • Journal of Adhesion and Interface
    • /
    • v.15 no.4
    • /
    • pp.161-168
    • /
    • 2014
  • New self-assembled discotic liquid crystals have been prepared through single hydrogen bonding between phenol and pyridine moieties, and their liquid crystalline properties were investigated. For the construction of discotic structure, we used phloroglucinol as a core molecule and trans-4-alkoxy-4'-stilbazoles with systematically varied alkyl chain lengths as peripheral units. FTIR results showed that the intermolecular hydrogen bonds between core and peripheral molecules are successfully formed, and the stability of the hydrogen bond is strongly influenced by molecular ordering. Discotic complexes exhibited different liquid crystalline phases depending on the length of alkyl chains around the discotic mesogen. The discotic complexes with longer alkyl chains showed hexagonal columnar mesophases, while the other complexes formed nematic columnar mesophases. These results indicated that the type of mesophase structure was strongly dependent on the alkyl chain length around the aromatic core.

Integrated CFD on Atomization Process of Lateral Flow in Injector Nozzle

  • Ishimoto, Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.7-8
    • /
    • 2006
  • The governing equations for high-speed lateral atomizing injector nozzle flow based on the LES-VOF model in conjunction with the CSF model are presented, and then an integrated parallel computation are performed to clarify the detailed atomization process of a high speed nozzle flow and to acquire data which is difficult to confirm by experiment such as atomization length, liquid core shapes, droplets size distributions, spray angle and droplets velocity profiles. According to the present analysis, it is found that the atomization rate and the droplets-gas two-phase flow characteristics are controlled by the turbulence perturbation upstream of the injector nozzle, hydrodynamic instabilities at the gas-liquid interface, shear stresses between liquid core and periphery of the jet. Furthermore, stable and a high-resolution computation can be attained in the high density ratio (pl/ pg = 554) conditions conditions by using our numerical method.

  • PDF

Ferroelectric Liquid Crystals from Bent-Core Molecules with Vinyl End Groups

  • Kwon, Soon-Sik;Kim, Tae-Sung;Lee, Chong-Kwang;Shin, Sung-Tae;Oh, Lee-Tack;Choi, E-Joon;Kim, Sea-Yun;Chien, Liang Chy
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.274-278
    • /
    • 2003
  • New banana-shaped achiral compounds, 1,3-phenylene bis [4-{4-(alkenyloxy) phenyliminomethyl}benzoate]s were synthesized by varying the length of alkenyl group; their ferroelectric properties are described. The smectic mesophases, including a switchable chiral smectic C $(Sm\;C^*)$ phase, were characterized by differential scanning calorimetry, polarizing optical microscopy and triangular wave method. The presence of vinyl groups at the terminals of linear side wings in the banana-shaped achiral molecules containing Schiff's base mesogen induced a decrease in melting temperature and formation of the switchable $(Sm\;C^*)$ phase in the melt. The smectic phases having the octenyloxy group such as $(CH_2)_6CH=CH_2$ showed ferroelctric switching, and their values of spontaneous polarization on reversal of an applied electric field were 120 nC/cm² (X=H) and 225 nC/ cm² (X=F), respectively. We could obtain ferroelectric phases by controlling the number of carbon atom in alkenyloxy chain of a bent-core molecule.

Theoretical Model of Coaxial Twin-Fluid Spray In a Liquid Rocket Combustor (연소실 내 동축형 2-유체 분무의 이론적 모델)

  • 조용호;윤웅섭
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.37-44
    • /
    • 2002
  • A theoretical study of spray and combustion characteristics due to coaxial twin-fluid injection is conducted to investigate the effects of liquid jet property, droplet size, contact length and liquid jet velocity. Model is properly validated with measurements and shows good agreement. Prediction of jet contact length, droplet size, liquid jet velocity reflects genuine features of coaxial injection in physical and practical aspects. Both the jet contact length and tile droplet size are reduced in a linear manner with an increase of injector diameter. Cross sectional area of liquid intact core is reduced with augmented jet splitting rate, thus the jet is accelerated to maintain the mass continuity and with an assistant of momentum diffusion by burnt gas.

Comparison between GOx/Kerosene and GN2O/Ethanol Reactive Spray in a Subscale Liquid Rocket Engine (축소형 액체로켓엔진에서 기체산소/케로신 및 기체아산화질소/에탄올 연소 분무의 비교)

  • Choi, Songyi;Shin, Bongchul;Lee, Keonwoong;Kim, Dohun;Koo, Jaye;Park, Dong-Kun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.61-68
    • /
    • 2015
  • Reactive sprays of two propellant combinations(GOx/kerosene and $GN_2O$/ethanol) were observed and compared with each other as a basic research of visualizing supercritical combustion. A shadowgraph imaging method was used to visualize the reactive sprays, and shadowgraph images were converted to density gradient magnitude images to analyse the structure of reactive sprays. The gas-liquid interface of GOx/kerosene spray showed rougher boundary and steeper density gradient near the injector face than the $N_2O$/ethanol at similar combustion chamber pressure. Spray core length was calculated from averaged density gradient magnitude images and it was revealed that spray core length of GOx/kerosene was shorter than that of $GN_2O$/ethanol, although momentum flux ratio of GOx/kerosene propellant combination was lower.

A Study on the Diesel Spray Evaporation and Combustion Characteristics in Constant Volume Chamber (정적연소실내의 디젤분무증발과 연소특성에 관한 연구)

  • Kim, S.H.;Kim, S.J.;Lee, M.B.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.102-109
    • /
    • 1994
  • As a fundamental study to apply high pressure injection system to direct injection diesel engine, fuel injection system and constant volume combustion chamber were made and the behaviors of evaporating spray with the variation of injection pressure and the ambient gas temperature were observed by using high speed camera, and the combusion characteristics with the variation of injection pressure and A/F ratio were analyzed. As injection pressure increases, spray tip penetration and spray angle increase and, as a results spray volume increases. This helps an uniform mixing of fuel and air. Spray liquid core length decreases as ambient gas temperature increases, while it decreases as injection pressure increases but the effect of ambient gas temperature is dorminant. As injection pressure increases, ignition delay is shortened and combustion rate being raised, maximum heat release rate increases. It become clear that High injection pressure has high level of potential to improve the performance of DI-diesel engine.

  • PDF

Effect of Swirl Injector with Multi-Stage Tangential Entry on Acoustic Damping in Liquid Rocket Engine (액체로켓에서 다단 접선 유입구를 갖는 스월인젝터의 음향학적 감쇠기능)

  • ;;;;Bazarov, V. G.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.71-79
    • /
    • 2006
  • Swirl injector with multi-stage tangential entry was analyzed to suppress high-frequency combustion instability in Liquid Rocket Engines. In order to analyze the effect of swirl injector as an acoustic absorber, swirl injector was regarded as a quarter-wave resonator and it's damping capacity is verified in atmospheric temperature. It has a finite mode of vibration and natural frequencies which can be tuned to the natural frequencies of a model combustion chamber. The interior air core shape of injector is more stable in the case of using the swirl injector with multi-stage entry than with single-stage entry. Also, when the swirl injector with multi-stage entry is used, tuned-injector length for unstable mode is well agreed with the calculated length. From the experimental data, it is proved that if the interior air core shape of swirl injector is stable, the fine tuned swirl injector can decrease the unstable mode of model chamber effectively and increase the damping rate.