• Title/Summary/Keyword: Liquid Chromatography-tandem Mass Spectrometry

Search Result 398, Processing Time 0.042 seconds

Rapid and Simple Method for the Determination of Pregabalin in Human Plasma using Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS): Application to a Bioequivalence Study of Daewoong Pregabalin Capsule To Lyrica® Capsule (Pregabalin 150 mg)

  • Jang, Ki-Ho;Seo, Ji-Hyung;Yim, Sung-Vin;Lee, Kyung-Tae
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.4
    • /
    • pp.255-262
    • /
    • 2011
  • Method using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was developed and validated for the determination of pregabalin in plasma samples. Acquisition was performed by monitoring the transitions: m/z 160.1${\rightarrow}$142.2 for pregabalin and m/z 423.2${\rightarrow}$207.1 for losartan (as an internal standard). After cold acetonitrileinduced protein precipitation of the plasma samples, separation was performed with C18 column by isocratic mobile phase consisted of 10 mM ammonium acetate and acetonitrile (15:85, v/v). Results were linear over the concentration ranged from 0.1 to $10{\mu}g$/mL and the correlation coefficients (r) were $\geq0.99$. Intra- and inter-day precisions were $\leq6.02$ and $\leq11.04%$, respectively, and intra- and inter-day accuracies were 96.60-101.09 and 98.10-102.60%, respectively. This validated method was successfully applied to a bioequivalence study of two formulations of pregabalin, Daewoong pregabalin capsule (Daewoong Pharm. Co., Ltd.) and Lyrica$^{(R)}$ capsule (Pfizer Korea Ltd.) in twenty eight healthy Korean volunteers. The subjects received a single oral dose of each formulation (150 mg as pregabalin) in a randomized $2{\times}2$ crossover study and plasma samples were obtained from each subject at predetermined time intervals. Then, the pharmacokinetic parameters ($AUC_{0-t}$, $C_{max}$ and $T_{max}$) were calculated and statistically analyzed to assess the differences between two formulations. The 90% confidence intervals for the log-transformed data were acceptable range of log 0.8-log 1.25 (e.g., log 1.0048-log 1.0692 for AUC0-t, log 0.9142-log 1.0421 for $C_{max}$). Thus, $AUC_{0-t}$ and $C_{max}$ met the criteria of the Korea Food and Drug Administration (KFDA) for bioequivalence test indicating that Daewoong pregabalin capsule was bioequivalent to Lyrica$^{(R)}$ capsule.

Quantitative Analysis of Hyangsayukgunja-Tang Using an Ultra-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry (LC-MS/MS를 이용한 향사육군자탕의 주요성분의 함량분석)

  • Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.4
    • /
    • pp.352-364
    • /
    • 2015
  • The aim of this study was to quantitatively analyze for quality assessment of eighteen marker compounds, including homogentisic acid, 3,4-dihydroxybenzaldehyde, spinosin, liquiritin, hesperidin, ginsenoside Rg1, liquiritigenin, ginsenoside Rb1, glycyrrhizin, 6-gingerol, atractylenolide III, honokiol, costunolide, dehydrocostuslactone, atractylenolide II, nootkatone, magnolol, and atractylenolide I, in Hyangsayukgunja-tang using an ultra-performance liquid chromatography-electrospray ionization-mass spectrometer. The column for separation of eighteen marker components were used a UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, $1.7{\mu}$) and kept at $45^{\circ}C$ by gradient elution with 0.1% (v/v) formic acid in water and acetonitrile as mobile phase. The flow rate and injection volume were 0.3 mL/min and $2.0{\mu}l$, respectively. The correlation coefficient of all marker compounds was ${\geq}0.9914$, which means good linearity, within the test ranges. The limits of detection and quantification values of the all analytes were in the ranges 0.04-1.11 and 0.13-3.33 ng/mL, respectively. As a result, five compounds, homogentisic acid, 3,4-dihydroxybenzaldehyde, spinosin, liquiritigenin, and atractylenolide I, in this sample were not detected and the amounts of the 13 compounds except for the 5 compounds were $8.10-6736.37{\mu}g/g$ in Hyangsayukgunja-tang extract.

Development of a Sensitive Analytical Method of Polynemoraline C Using LC-MS/MS and Its Application to a Pharmacokinetic Study in Mice

  • Pang, Minyeong;Lee, Jaehyeok;Jeon, Ji-Hyeon;Song, Im-Sook;Han, Young Taek;Choi, Min-Koo
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.200-205
    • /
    • 2021
  • Polynemoraline C, a pyridocoumarin alkaloid, exhibits anticholinergic, anti-inflammatory, antitumor, and antimicrobial activities. A sensitive analytical method of polynemoraline C in mouse plasma was developed and validated using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Polynemoraline C and 13C-caffeine (internal standard) in mouse plasma were extracted using a liquid-liquid extraction method coupled with ethyl acetate. This extraction method resulted in high and reproducible extraction recovery in the range of 73.49%-77.31% with no interfering peaks around the peak retention time of polynemoraline C and 13C-caffeine. The standard calibration curves for polynemoraline C were linear over the range of 0.5-200 ng/mL with r2 > 0.985. The accuracy, precision, and the stability of the data were within acceptable limits on the FDA guideline. After intravenous and oral administration of polynemoraline C at doses of 5 and 30 mg/kg, respectively, the present method was successfully applied to the pharmacokinetic study of polynemoraline C. Polynemoraline C in mouse plasma showed a multi-exponential elimination pattern with a high volume of distribution values. This compound's absolute oral bioavailability was found to be 17.0%. Polynemoraline C's newly developed LC-MS/MS method can be used for further studies on the efficacy, toxicity, and biopharmaceutics of polynemoraline C, as well as its pharmacokinetic studies.

Analysis Method of Parabens in Human Breast Milk by LC-MS/MS System (LC-MS/MS 시스템을 이용한 모유 중 파라벤류 분석법 확립)

  • Park, Na-Youn;Lee, Eun-Hee;Kho, Younglim
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.2
    • /
    • pp.118-124
    • /
    • 2016
  • Parabens were commonly used for preventing the growth of microorganisms as preservatives in the pharmaceutical, cosmetic and food industry. Also, parabens are known endocrine disruptors because of their estrogenic effects on human. Parabens affect the endocrine system and show adverse effect such as, genital malformations, precocious puberty and testicular cancer in young children, infants and fetuses. In this study, we developed analytical method for four parabens (methyl paraben, ethyl paraben, propyl paraben, butyl paraben) in human breast milk which frequently consumed by newborn baby. The analytes were extracted using liquid-liquid extraction (LLE) after enzyme hydrolysis with protease and lipase, then quantitative analysis was performed by liquid chromatography tandem mass spectrometry (LC-MS/MS). The method validation results were as follows; the linearity of calibration curves were excellent with coefficient of determinations (r2) higher than 0.999, the limit of detections (LODs) were 0.019~0.044 ng/mL, the accuracies were 85.3~105.9% and the precisions were lower than 10%. The average concentration ± standard deviation of parabens in ten human breast milk sample were MP 0.660 ± 0.519 ng/mL, EP 1.631 ± 2.081 ng/mL and PP 0.326 ± 0.320 ng/mL, and BP was not detected.

Quantitative Analysis of Marker Compounds and Matabolic Profiling of Zanthoxylum piperitum (Chopi) according to Different Parts and Harvest T imes

  • Hyejin Hyeon;Eunbi Jang;Yoonji Lee;Sung Hye Han;Baek Kwang Yeol;Su Young Jung;Ki Sung Shin;Weon-Jong Yoon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.62-62
    • /
    • 2023
  • Zanthoxylum piperitum ("chopi" in Korean) has been used as traditional medicinal plants with high anti-inflammatory, antioxidant, and antifungal activities. The aims of the study were to identify marker compounds and to investigate metabolites variation of chopi according to different parts and harvest times. Every month from June to September, chopi were harvested with three different parts: leaves, leaf-twig mixtures, twigs. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), two main marker compounds (quercitrin and quercetin-3-O-glucoside) were characterized in 70% ethanol extracts of chopi. Quantification of the two marker compounds were subsequently conducted by high performance liquid chromatography (HPLC), representing that contents of these compounds were higher in leaves and leaf-twig mixtures rather than twigs. For the comprehensive analysis of metabolites associated with production of marker compounds, 35 primary metabolites were identified using gas chromatography-mass spectrometry (GC-MS). Multivariate analysis results represented that plant parts were main contributors to the separation of chopi. However, significant differences were not observed between leaves and leaf-twig mixtures samples. The partial least square (PLS) predictive model revealed that monosaccharides (fructose, galactose, glucose, mannose, xylose) and branched-chain amino acids (isoleucine, valine, leucine) were important determinants for the production of marker compounds together with alanine, inositol, GABA, and theronic acid. This study could be extended to stabilize and utilize chopi as an industrial material, as well as to find good candidates with various nutritional traits.

  • PDF

Development of a method for the determination of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in dust using liquld chromatography tandem mass spectrometry (LC-MS/MS를 이용하여 먼지 속의 NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone) 정량 분석법 개발)

  • Lee, W.K.;Kang, S.J.;Oh, J.E.;Hwang, S.H.;Lee, D.H.
    • Analytical Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco specific nitrosamine found only in tobacco products. The ability to monitor biomarker concentrations is very important in understanding environmental tobacco smoke (ETS). In this study, an efficient and sensitive method for the analysis of NNK in dust was developed and validated using liquid chromatography tandem mass spectrometry. Dust was collected with filter paper soaked in methanol. The standard solution and dust sample were diluted with 100 mM ammonium acetate and extracted using dichloromethane. Our calibration curves ranged from 25 to $10^4pg/mL$. Excellent linearity was obtained with correlation coefficient values between 0.9996 and 1.0000. The limit of detection (LOD) was 5 pg/mL ($S/N{\geq}3$) and the retention time was 10 min. The limit of quantification (LOQ) was 25 pg/mL, and the acceptance criteria was the rate of 98-103% (80-120% at levels up to $3{\times}LOQ$). The coefficient of variations (CV) was 2.8%. Accuracies determined from dust samples spiked with four different levels of NNK racurves ranged that from 25 to 104 pg/mL. Excellent linearity was obtained between 92.1% and 114%. The precision of the method was acceptable (5% of CV). The recovery rates of the whole analytical procedure at low, medium, and high levels were 105.7-116.5% for NNK. The carry-over effects during LC-MS/MS analysis were not observed for NNK. This manuscript summarizes the scientific evidence on the use of markers to measure ETS.

Analysis of PAHs (polycyclic aromatic hydrocarbons) in Ground Coffee Using GC-tandem Mass Spectrometry and Estimation of Daily Dose (GC-tandem mass spectrometry를 이용한 분쇄원두커피 중 PAHs(polycyclic aromatic hydrocarbons) 분석법 연구 및 인체노출량 평가)

  • Jung, So-Young;Park, Ju-Sung;Son, Yeo-Joon;Choi, Su-Jeong;Lee, Yun-Jeong;Kim, Mi-Sun;Park, So-Hyun;Lee, Sang-Me;Chae, Young-Zoo
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.544-552
    • /
    • 2011
  • The purpose of this study was to develop an analytical method for determining 15 polycyclic aromatic hydrocarbons (PAHs) of EU priority using gas chromatography (GC)-tandem mass spectrometry (MS). The PAHs in ground coffee were analyzed after being extracted using methods such as saponification-liquid-liquid extraction, Soxhlet extraction, and solid-liquid extraction. The solid-liquid extraction method showed the greatest repeatability and most efficient reduction of the matrix effect. GC-tandem MS for the quantification of the 15 PAHs showed better resolution and lower limit of detections (LODs) than GC-MS-selected ion monitoring (SIM) and high performance liquid chromatography with fluorescence detector. LODs of this method for the ground coffee types were 0.002-0.1 ${\mu}g/kg$ and limit of quantifications (LOQs) were 0.006-0.2 ${\mu}g/kg$ The recoveries ranged from 52.6 to 93.3%. Forty-six commercial types of ground coffee were analyzed to determine their PAHs contamination levels. PAHs concentration ranged from ND to 5.988 ${\mu}g/kg$. This study was conducted with toxicity equivalence factors, the U.S. EPA recommendation to identify dietary risks for PAHs in different types of coffee. The estimated average daily dose of PAHs was $5.24{\times}10^{-8}$ mg/kg body weight/day.

Electrospray-Mass Spectrometric Analysis of Plasma Pyrophosphates Separated on a Multi-Modal Liquid Chromatographic Column

  • Lee, Su-Hyeon;Lee, Jeong-Ae;Lee, Won-Yong;Chung, Bong-Chul;Choi, Man-Ho
    • Mass Spectrometry Letters
    • /
    • v.2 no.4
    • /
    • pp.92-95
    • /
    • 2011
  • Pyrophosphates are the key intermediates in the biosynthesis of isoprenoids, and their concentrations could reveal the benefits of statins in cardiovascular diseases. Quantitative analysis of five pyrophosphates, including isopentenyl pyrophosphate (IPP), dimethylallyl pyrophosphate (DMAPP), geranyl pyrophosphate (GPP), farnesyl pyrophosphate (FPP), and geranylgeranyl pyrophosphate (GGPP), was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in negative ionization mode. After dilution with methanol, samples were separated on a 3 ${\mu}m$ particle multi-modal $C_{18}$ column ($50{\times}2$ mm) and quantified within 10 min. The gradient elution consists of 10 mM ammonium bicarbonate and 0.5% triethylamine (TEA) in water and 0.1% TEA in 80% acetonitrile was used at the flow rate of 0.4 mL/min. Overall recoveries were 51.4-106.6%, while the limit of quantification was 0.05 ${\mu}g$/mL for GPP and FPP and 0.1 ${\mu}g$/mL for IPP, DMAPP, and GGPP. The precision (% CV) and accuracy (% bias) of the assay were 1.9-12.3% and 89.6-111.8%, respectively, in 0.05-10 ${\mu}g$/mL calibration ranges ($R^2$ > 0.993). The devised LC-MS/MS technique with the multi-modal $C_{18}$ column can be used to estimate the biological activity of pyrophosphates in plasma and may be applicable to cardiovascular events with cholesterol metabolism as well as the drug efficacy of statins.

Quantitative analysis of cholesterol in infant formula by isotope dilution liquid chromatography-tandem mass spectrometry (동위원소희석 액체크로마토그래피 질량분석법에 의한 분유 내 콜레스테롤의 정량)

  • Ahn, Eun Jeong;Lee, Hwa Shim;Kim, Byung Joo;Lee, Gae Ho
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.460-466
    • /
    • 2015
  • An isotope dilution liquid chromatography tandem mass spectrometry was developed as a primary method for the quantitative analysis of cholesterol in infant formula. Cholesterol-d4 was used as an internal standard and spiked into the infant formula sample. In order to release cholesterol out of cholesteryl ester, which is cholesterol bound to fatty acids in infant formula, saponification was carried out. Saponification conditions were optimized with heating temperature, reaction time and the concentration of KOH. The optimum conditions were as follows; heating temperature was 70 ℃, reaction time was 180 min and the concentration of KOH was 0.8 mL of 8 M KOH for about 0.1 g infant formula sample. Extraction of cholesterol out of sample solution was carried out with hexane uisng liquid-liquid extraction. Chromatographic analysis was carried out using Phenomenex Kinetex C18 column. Mobile phase was 0.1% acetic acid in methanol/water (v/v, 99/1) and flow rate was 0.3 mL/min. Cholesterol and cholesterol-d4 were monitored at mass transfer m/z 369/259 and 373/263 respectively. Reproducibility of the method was evaluated to be 0.23% of the measurement result. The expanded uncertainty of the measurement result of cholesterol in infant formula was approximately 1.9% at a 95% confidence level. NIST standard reference material having certified values of cholesterol in infant formula, was analyzed in order to verify this method. The ID-LC/MS/MS results were well agreed with the certified values of NIST SRM within the uncertainty.

Determinations of Toltrazuril and Toltrazuril Sulfone Levels in Olive Flounder Paralichthys olivaceus Samples Using Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry (LC-MS/MS를 이용한 넙치(Paralichthys olivaceus)시료의 톨트라주릴 및 톨트라주릴 설폰 분석)

  • Hong, Do Hee;Kim, Ah Hyun;Lee, Ka Jeong;Yoon, Minchul;Son, Kwang Tae;Kim, Myoung Sug;Kim, Na Young;Jung, Sung Hee;Jo, Mi Ra
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.5
    • /
    • pp.461-467
    • /
    • 2019
  • Several studies investigating the prevention and treatment of external parasites in farmed olive flounder Paralichthys olivaceus have found that the anticoccidial agent toltrazuril sulfone is an effective antiparasitic. Prior to undertaking a full-scale study, we developed analytical methods to detect the levels of toltrazuril and toltrazuril sulfone in farmed flounder samples using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-MS/MS). This analysis showed that LC-MS/MS changed the mobile phase and collision energy of toltrazuril and toltrazuril sulfone. This was validated using established conditions. Sample pre-treatment for this process involved extraction with dichloromethane and purification by liquid-liquid extraction in formic acid, acetonitrile, and h-hexane, followed by determination of all compounds by LC-MS/MS. Separation was achieved within 10 min by gradient elution using a Capcell Pak C18 ($3.0{\mu}m$, $100{\times}2.0mm$) analytical column (Shiseido UG 120V) with a mixture of 0.1% (v/v) formic acid and acetonitrile. Multiple reaction monitoring was used for selective detection of toltrazuril and toltrazuril sulfone. This method yields satisfactory results for linearity, precision, and limits of quantification. Therefore, the method established in our study will serve as a basis for further research on parasite control by toltrazuril and toltrazuril sulfone.