• Title/Summary/Keyword: Liquefied Natural Gas

Search Result 333, Processing Time 0.028 seconds

Investigation of the Bonding Stress of the 2nd Barrier for LNG Carrier Cargo Containment System Considering Various Working Conditions (다양한 작업 조건을 고려한 LNG 운반선 화물창 2차 방벽의 극저온 접착강도 분석)

  • Jeong-Hyeon Kim;Hee-Tae Kim;Byeong-Kwan Hwang;Seul-Kee Kim;Tae-Wook Kim;Doo-Hwan Park;Jae-Myung Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.3
    • /
    • pp.499-507
    • /
    • 2023
  • The core of the liquefied natural gas (LNG) carrier cargo containment system (CCS) is to store and transport LNG safely under temperatures below -163 degrees Celsius. The secondary barrier of the LNG CCS is adopted to prevent LNG leakage from CCS to the ship's hull structure. Recently, as the size of the LNG CCS increases, various studies have been conducted on the applied temperature and load ranges. The present study investigates the working condition-dependent bonding strength of the PU15 adhesives of the secondary barrier. In addition, the mechanical performance is analyzed at a cryogenic temperature of -170 degrees Celsius, and the failure surface and failure mode are investigated depending on the working condition of the bonded process. Even though the RSB and FSB-based fracture mode was confirmed, the results showed that all the tested scenarios satisfied the minimum requirement of the regulation.

Engineering Critical Assessement for an Independent Type-B LNG Cargo Tank (독립형 LNG 화물창의 공학적 결함 평가)

  • Jae Hoon Seo;Kyu-Sik Park;Inhwan Cha;Joonmo Choung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.213-221
    • /
    • 2023
  • The demand for Liquefied Natural Gas (LNG) carriers and LNG-fueled ships has significantly increased in recent years due to the sulfur-oxide emission regulations by the International Maritime Organization (IMO). The main goal of this paper is to introduce the process for the Engineering Critical Assessment (ECA) of IMO independent type-B cargo tanks made from 9% nickel alloy. A methodology proposed by the British Standard was used to conduct ECA for any structure with initial flaws. Based on this standard, a Matlab code was developed to perform ECA. Coarse mesh Finite Element Analysis (FEA) was performed on an independent type-B LNG cargo tank with a capacity of 15,000 m3. The location with the highest development of maximum principal stress was identified at the bottom of the cargo tank. Fine mesh FEA was performed to obtain the stress range required for ECA. The dynamic cargo tank loads used for FEA were determined using some ship rules presented by Det Norske Veritas. As a result of performing a 20-year long-term crack propagation analysis with a semi-elliptical surface crack, the fracture-to-yield ratio exceeded the Fracture Assessment Line (FAL) and some structural reinforcement was necessary. Performing a 15-day short-term crack propagation analysis, the fracture-to-yield ratio remained within the FAL, and no significant LNG leaks were expected. This paper is believed to provide a guide for performing ECA of LNG cargo tanks in the future by providing the basic theory and application sample necessary to perform ECA.

Effects of Basalt Fiber on the Mechanical Properties of Secondary Barrier for LNG Cargo Containment System (현무암섬유를 이용한 LNG 화물창 2차 방벽의 기계적 특성에 대한 연구)

  • Woo-Seung Noh;Hae-Reum Shin;Seung-June Yeo;Man-Tae Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.207-212
    • /
    • 2024
  • Recently, with the strengthening of environmental regulations, there has been an increasing interest in eco-friendly energy sources, leading to a trend of the increasing scale of Cargo Containment Systems (CCS) for Liquefied Natural Gas (LNG) carriers. Among these systems, membrane tanks have gained popularity in LNG transport vessels due to their superior spatial utilization and competitiveness. However, due to high initial investment costs and the difficulty in repair in case of damage, a safety layer, the secondary barrier, must be installed without fail. In this study, in order to apply a new secondary barrier to the existing membrane-type LNG CCS, tests were conducted on the fiberglass layer previously used in the Triplex-Flexible Secondary Barrier (FSB), substituting it with basalt fiber. Tensile and vertical tensile tests were performed to assess the newly applied material. Environmental tests were conducted at room temperature (25℃) and extremely low temperatures (-170℃), considering the temperatures to which substances may be exposed during LNG vessel operations. The basalt-FSB produced in this study demonstrated superior results compared to the specifications of the existing product, confirming its potential applicability for implementation.

Experimental Study on Gasification Characteristic by Using Liquefied Gas Vaporizer with Various Shape (다양한 형상을 갖는 액화가스용 기화기의 기화특성에 관한 실험적 연구)

  • Lee, Y.H.;Eldwin, D;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.11 no.2
    • /
    • pp.5-11
    • /
    • 2007
  • 액화천연가스(LNG : Liquified Natural Gas)는 연료로 사용하기 위하여 기화하는 과정을 거치게 되는데 기화하는 방식에는 해수에 의한 기화와 공기에 의한 기화의 두 가지 방식으로 나뉘게 된다. 해수에 의한 기화는 LNG 인수기지에서 대량의 LNG를 NG로 기화하기 위하여 사용하며, 공기에 의한 기화는 LNG 위성기지에서 사용처에 적합한 온도를 얻기 위해서 일반적으로 많이 사용하고 있는 공기식 기화기를 이용하여 기화를 하는 방식을 취하고 있다. LNG가 NG로 기화하는 과정에서 1kg당 200kcal의 냉열을 외부로 방출하고 있으며, 이러한 냉열의 방출로 인하여 공기식 기화기의 표면에 결빙현상을 발생시킨다. 또한 현재 사용하고 있는 기화기는 $2{\sim}3$개의 기화기를 연결하여 사용하고 있어 그 비용의 손실이 크다고 할 수 있다. 그리하여 본 연구는 최근 사용빈도가 증가하고 있는 공기식 기화기에 관한 것으로 작동유체는 실제 LNG와 특성이 비슷한 초저온 액화가스인 $LN_2$를 사용하였다. 이번 연구에 사용된 변수는 다음과 같다. 첫째, 각각의 기화기의 길이를 4000mm, 6000mm, 8000mm으로 하였고 핀의 type을 finless, 4fin, 8fin으로 하여 적용하였다. 두 번째는 봄, 여름, 가을, 겨울철에 따른 기화기의 성능을 알고자 각각의 계절별 온도와 습도를 적용하였다. 마지막으로 계절별 풍속과 실험을 하는 시간 동안의 유량을 알고자 압력을 1 bar로 적용하였다. 그리하여 이번 연구의 목적으로는 각각의 변수를 통하여 실험을 진행 한 후 vaporizer type과 길이에 대한 최적의 성능을 가지는 기화기에 대한 자료를 제시하고자 한다.기성분은 균주에 따른 약간의 차이가 있었으나 경향은 비슷하게 나타났다. 이상의 결과 알코올 발효 균주에 따른 참다래 와인의 이화학적 품질특성에는 큰 차이가 없었으나 고급알코올함량을 비교하였을 때 Sacch. cerevisiae Wine 3이 와인제조에 가장 적합한 것으로 평가되었다.장 낮은 값을 나타내었으며, 홍국의 함유량이 증가할수록 유의적으로 증가하였다. b값은 CSB가 가장 낮은 값을 나타내었으며, 홍국의 함유량이 증가할수록 유의적으로 증가하였다. 물성측정 결과 경도와 응집성은 각 시료들 간의 유의적인 차이가 나타나지 않았다. 탄력성과 부서짐성은 CSB가 가장 낮았으며, 홍국의 함유량이 증가할수록 증가하였다. 점착성은 SDB1이 가장 낮았으며, 홍국의 함유량이 증가할수록 증가하였다. 관능검사 결과 기공의 균일성은 SDB1이 가장 균일한 것으로 나타났으며, 색은 홍국의 함유량이 증가할수록 높게 나타났다. 경도, 탄력성, 단맛 및 신맛 등은 홍국 함유량이 증가할수록 증가하는 것으로 나타났다. 이취는 SDB1이 가장 적게 나는 것으로 나타났으며, 전반적인 기호도는 SDB1이 가장 높았다. 따라서 홍국을 10% 첨가한 sourdough starter를 3일 동안 발효한 후 반죽에 첨가하여 sourdough bread를 제조할 때 품질이 가장 우수한 제품을 얻을 수 있었다.생수와 여러 물질의 혼합용액의 온도가 장에 끼치는 자극에 차이가 있지 않나 추측되며 이에 관한 추후 연구가 요망된다. 총대장통과시간의 단축은 결장 분절 모두에서 줄어들어 나타났으나 좌측결장 통과시간의 감소 및 이로 인한 이 부위의 통과시간 비율의 저하가 가장 주요하였다. 이러한 결과는 차가운 생수 섭취가 주로 결장 근위부를 자극하는 효과를 발휘하는 것이 아닌가

  • PDF

A Study on the Hazard Area of Bunkering for Ammonia Fueled Vessel (암모니아 연료추진 선박의 벙커링 누출 영향에 관한 연구)

  • Ilsup Shin;Jeongmin Cheon;Jihyun Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.964-970
    • /
    • 2023
  • As part of the International Maritime Organization ef orts to reduce greenhouse gas emissions, the maritime industry is exploring low-carbon fuels such as liquefied natural gas and methanol, as well as zero-carbon fuels such as hydrogen and ammonia, evaluating them as environmentally friendly alternatives. Particularly, ammonia has substantial operational experience as cargo on transport ships, and ammonia ship engines are expected to be available in the second half of 2024, making it relatively accessible for commercial use. However, overcoming the toxicity challenges associated with using ammonia as a fuel is imperative. Detection is possible at levels as low as 5 ppm through olfactory senses, and exposure to concentrations exceeding 300 ppm for more than 30 min can result in irreparable harm. Using the KORA program provided by the Chemical Safety Agency, an assessment of the potential risks arising from leaks during ammonia bunkering was conducted. A 1-min leak could lead to a 5 ppm impact within a radius of approximately 7.5 km, affecting key areas in Busan, a major city. Furthermore, the potentially lethal concentration of 300 ppm could have severe consequences in densely populated areas and schools near the bunkering site. Therefore, given the absence of regulations related to ammonia bunkering, the potential for widespread toxicity from even minor leaks highlights the requirement for the development of legislation. Establishing an integrated system involving local governments, fire departments, and environmental agencies is crucial for addressing the potential impacts and ensuring the safety of ammonia bunkering operations.

Effect of Varying Excessive Air Ratios on Nitrogen Oxides and Fuel Consumption Rate during Warm-up in a 2-L Hydrogen Direct Injection Spark Ignition Engine (2 L급 수소 직접분사 전기점화 엔진의 워밍업 시 공기과잉률에 따른 질소산화물 배출 및 연료 소모율에 대한 실험적 분석)

  • Jun Ha;Yongrae Kim;Cheolwoong Park;Young Choi;Jeongwoo Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.52-58
    • /
    • 2023
  • With the increasing awareness of the importance of carbon neutrality in response to global climate change, the utilization of hydrogen as a carbon-free fuel source is also growing. Hydrogen is commonly used in fuel cells (FC), but it can also be utilized in internal combustion engines (ICE) that are based on combustion. Particularly, ICEs that already have established infrastructure for production and supply can greatly contribute to the expansion of hydrogen energy utilization when it becomes difficult to rely solely on fuel cells or expand their infrastructure. However, a disadvantage of utilizing hydrogen through combustion is the potential generation of nitrogen oxides (NOx), which are harmful emissions formed when nitrogen in the air reacts with oxygen at high temperatures. In particular, for the EURO-7 exhaust regulation, which includes cold start operation, efforts to reduce exhaust emissions during the warm-up process are required. Therefore, in this study, the characteristics of nitrogen oxides and fuel consumption were investigated during the warm-up process of cooling water from room temperature to 88℃ using a 2-liter direct injection spark ignition (SI) engine fueled with hydrogen. One advantage of hydrogen, compared to conventional fuels like gasoline, natural gas, and liquefied petroleum gas (LPG), is its wide flammable range, which allows for sparser control of the excessive air ratio. In this study, the excessive air ratio was varied as 1.6/1.8/2.0 during the warm-up process, and the results were analyzed. The experimental results show that as the excessive air ratio becomes sparser during warm-up, the emission of nitrogen oxides per unit time decreases, and the thermal efficiency relatively increases. However, as the time required to reach the final temperature becomes longer, the cumulative emissions and fuel consumption may worsen.

A Study on the Enactment Proposal of the Ship sale & Purchase in Maritime Law (해사법상 선박매매에 관한 입법적 고찰)

  • Jeong, Seon-Cheol
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.51-55
    • /
    • 2007
  • This thesis deals with the legal principles, case law decisions and suggestions for the Sale & Purchase of ships concerning enactment proposal of maritime law. Recently, the shipbuilding market has shown a major shift towards East Asia, particularly Korea, Japan and China. The major Korean shipyards in particular have engaged in substantial investment programmes both to expand their overall shipbuilding capacity and to enter new markets, such as for liquefied natural gas(LNG) carriers. The Korean Government has recently taken interest in the sale & purchase of used ships, utilizing the Internet and has made plans for building the Shipping Exchange in korea. So this thesis examines the situation of the world's shipping industry and the different kinds of the Sale & Purchase of ships. deals with the legal principles, and case law decisions. describes Forms of Shipbuilding Contracts and Memorandums of Agreement of second-hand ships. And makes suggestions for 1) the Shipbuilding Contracts of the shipowner's Association of Korea and 2) The Korean Shipbrokers' Association's Memorandum of Agreement for Ship Sale & Purchase in the korean shipping industry. Having reached the end of this thesis. the writer suggests to make terms of sale of ships in the korean civil code and commercial code, Additionally. the writer suggests to make a special law in relation to the Sale & Purchase of ships. Furthermore, the writer suggests expanding the Shipping Exchange in Korea.

  • PDF

An Study on Estimating Cargo Handling Equipment Emission in the Port of Incheon (인천항 하역장비 대기오염물질 배출량 산정 연구)

  • Zhao, Ting-Ting;Pham, Thai-Hoang;Lee, Hyang-Sook
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.3
    • /
    • pp.21-38
    • /
    • 2020
  • Currently, in-port emissions are a serious problem in port cities. However, emissions, especially non-greenhouse gases, from the operation of cargo handling equipment (CHE) have received significant attention from scientific circles. This study estimates the amount of emissions from on-land port diesel-powered CHE in the Port of Incheon. With real-time activity data provided by handling equipment operating companies, this research applies an activity-based approach to capture an up-to-date and reliable diesel-powered CHE emissions inventory during 2017. As a result, 105.6 tons of carbon monoxide (CO), 243.2 tons of nitrogen oxide (NOx), 0.005 tons of sulfur oxide (Sox), 22.8 tons of particulate matter (PM), 26.0 tons of volatile organic compounds (VOCs), and 0.2 tons of ammonia (NH3) were released from the landside CHE operation. CO and NOx emissions are the two primary air pollutants from the CHE operation in the Port of Incheon, contributing 87.71% of the total amount of emissions. Cranes, forklifts, tractors, and loaders are the four major sources of pollution in the Port of Incheon, contributing 84.79% of the total in-port CHE emissions. Backward diesel-powered machines equipped in these CHE are identified as a key cause of pollution. Therefore, this estimation emphasizes the significant contribution of diesel CHE to port air pollution and suggests the following green policies should be applied: (1) replacement of old diesel powered CHE by new liquefied natural gas and electric equipment; (2) the use of NOx reduction after-treatment technologies, such as selective catalytic reduction in local ports. In addition, a systematic official national emission inventory preparation method and consecutive annual in-port CHE emission inventories are recommended to compare and evaluate the effectiveness of green policies conducted in the future.

Damage Evaluation of Bi-directionally Prestressed Concrete Panels under Blast-fire Combined Loading (폭발 후 화재하중 시나리오에 따른 2방향 프리스트레스트 콘크리트 패널부재의 손상도 평가)

  • Choi, Ji-Hun;Choi, Seung-Jai;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.237-248
    • /
    • 2017
  • Frequent terror or military attack by explosion, impact, fire accidents have occurred recently. These attacks and incidents raised public concerns and anxiety of potential terrorist attacks on important infrastructures. However, structural behavioral researches on prestressed concrete (PSC) infrastructures such as Prestressed Concrete Containment Vessel (PCCV) and Liquefied Natural Gas (LNG) storage tanks under extreme loading are significantly lacking at this time. Also, researches on possible secondary fire scenarios after terror and bomb explosion has not been performed yet. Therefore, a study on PSC structural behavior from an blast-induced fire scenario was undertaken. To evaluate the blast-fire combined resistance capacity and its protective performance of bi-directional unbonded PSC member, blast-fire tests were carried out on $1,400mm{\times}1,000mm{\times}300mm$ PSC specimens. Blast loading tests were performed by the detonation of 25 kg ANFO explosive charge at 1.0 m standoff distance. Also, fire and blast-fire combined loading were tested using RABT fire loading curve. The test results are discussed in detail in the paper. The results can be used as basic research references for related research areas, which include protective design simulation under blast-fire combined loading.

Non-linear tensile behavior of high manganese steel based on elasto-plastic damage model (탄-소성 손상모델을 활용한 고망간강의 인장거동 모사에 관한 연구)

  • Kim, Jong-Hwan;Lee, Jeong-Ho;Kim, Seul-Kee;Chun, Min-Sung;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.222-229
    • /
    • 2017
  • High manganese steel exhibits excellent mechanical properties with respect to strength and durability at low temperatures. Recently, high manganese steel has been considered as an alternative to existing materials, such as nickel steel and SUS304L for application as tank material for Liquefied Natural Gas (LNG) cargo containment systems. In the present study, tensile tests were performed at room and cryogenic temperatures in order to investigate the mechanical properties and non-linear tensile behavior of high manganese steel. In addition, elasto-plastic damage model was applied using the finite element analysis software ABAQUS via a user defined material subroutine (UMAT) to describe the material behavior. Finally, the results of the finite element simulations using the UMAT were compared to those of the tensile tests in order to validate the proposed UMAT. It has been demonstrated that the UMAT can effectively describe the non-linear tensile behavior of high manganese steel.