• Title/Summary/Keyword: Liquefaction system

Search Result 157, Processing Time 0.029 seconds

Spectral Intensity for the Evaluation of liquefaction Potential (스펙트럼 강도와 지반의 액상화 가능성에 대한 연구)

  • 박종관
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.06a
    • /
    • pp.1-14
    • /
    • 1993
  • Ground reinforcements is the essential method to prevent the liquefaction of loose sand deposit, However, in the construction of the life lines, it is impossible to treat the whole loose deposit against liquefaction. As an countmeasure for the life lines against the liquefaction, a monitorning system can be considered for an immediate judgement of the liquefaction occurrence during an earthquake. Through shaking table tests on model grounds, pore presure developments were investigated in terms of the surface spectral velocity, which was verified as a tool for the immediate judgement of the liquefaction occurrence.

  • PDF

Performance Characteristics of New LNG Liquefaction Cycles with Temperature Differences in the Heat Exchangers (열교환기 온도차에 따른 새로운 LNG 액화사이클의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.51-56
    • /
    • 2014
  • In this paper, the performance of the $CO_2-C_2H_6-N_2$ cascade liquefaction cycle with respect to temperature differences in the LNG heat exchangers is analyzed theoretically using HYSYS software and then compared the COP(coefficient of performance) of the cascade liquefaction cycles using $C_3H_8-C_2H_4-C_1H_4$ and $CO_2-N_2O-N_2$. In comparison of COP of three cycles, the cascade liquefaction cycles using $C_3H_8-C_2H_4-C_1H_4$ showed the highest COP. And the liquefaction cycle using $CO_2-C_2H_6-N_2$ and $CO_2-N_2O-N_2$ presented the second and third highest COP, respectively. In case of COP, the $C_3H_8-C_2H_4-C_1H_4$ cascade liquefaction cycle yields better COP. But, in terms of the environment and maintain, it is confirmed that the cascade liquefaction cycle using $CO_2-C_2H_6-N_2$ provides favorable characteristics.

Effect on Heat Exchangers Efficiency on Performance of Cryogenic Refrigeration Cycles (열교환기 효율이 초저온 냉동사이클 성능에 미치는 영향)

  • Yoon, Jung-In
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.58-63
    • /
    • 2013
  • This paper presents the new cascade liquefaction cycles using $CO_2-C_2H_6-N_2$ and $CO_2-N_2O-N_2$. The performance of the cascade liquefaction cycles with respect to temperature differences in the LNG heat exchangers is analyzed using HYSYS software and then compared the performance of these cycles with phillips optimized cascade liquefaction cycle. The coefficient of performance of the new liquefaction cycles considered in this study decreases with the temperature differences in the LNG heat exchangers, but the compressor work, expander work and heat capacity in the LNG heat exchanger increases, respectively. From the comparison of performance of three cycles, the cascade liquefaction cycles using $CO_2-C_2H_6-N_2$ showed the highest COP. And the cycles using $CO_2-C_2H_6-N_2$ and $CO_2-N_2O-N_2$ presented the second and third highest COP, respectively. In the view of performance, the optimized cascade liquefaction cycle using $C_3H_8-C_2H_4-C_1H_4$ yields much better COP. But, in the environment view, it is found that the cascade liquefaction cycle using $CO_2-C_2H_6-N_2$ shows favorable characteristics.

Thermodynamic Analysis of Hydrogen Lquefaction Systems Using Gifford-McMahon Cryocooler

  • Chang, Ho-Myung;Park, Dae-Jong;Kang, Byung-Ha
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.39-50
    • /
    • 2000
  • Thermodynamic cycle analysis is presented to estimate the maximum liquefaction rate of hydrogen for various systems using a Gifford-McMahon(GM) cryocooler. Since the present authors` previous experiments showed that the gaseous hydrogen was liquefied approximately at the rate of 5.1 mg/s from the direct contact with a commercial two-stage GM refrigerator, this study has been proposed to predict how much the liquefaction rate can be increased in different configurations using the GM cooler and with improved heat exchangers. The optimal operating conditions have been analytically sought with real properties of normal hydrogen for the Linde-Hampson(L-H) system precooled by single-stage GM, the direct-contact system with two-stage GM, the L-H system precooled by two-stage GM, and the direct-contact system with helium GM-JT (Joule-Thomson). The maximum liquefaction rate has been predicted to be only about 7 times greater than the previous experiment, even though the highly effective heat exchangers may be employed. It is concluded that the liquefaction rate is limited mainly because of the cooling capacity of the commercially available GM cryocoolers and a practical scale of hydrogen liquefaction is possible only if the GM cooler has a greater capacity at 70-100 K.

  • PDF

A Study on Mapping of Liquefaction Hazard at a Megalopolis in Korea (국내 광역 단위 지역의 액상화 재해도 작성을 위한 연구)

  • Choi, Jae-Soon;Ku, Tai-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1246-1249
    • /
    • 2009
  • Liquefaction hazard caused by earthquake is the damage in a wide range. Until now, liquefaction hazard potential at a small area or most structure in Korea was assessed by modified Seed & Idriss method. However, it has been known that this method is not proper for metropolitan area due to a lot of time and data to perform the related ground response analyses such as Shake program. For these reasons, the current method has been used facilities or structures, not metropolitan area. In this study, several contents in seismic design of Eurocode and Korean seismic design standard for Port and Harbor were introduced and applied for assessing the liquefaction potential and mapping the liquefaction hazard by LPI(Liquefaction Potential Index). Finally, Ulsan metropolitan city was practically drawn in two dimensional space.

  • PDF

Simulation Study on the Application of LNG Cold Energy for Hydrogen Liquefaction Process (수소액화공정에서 LNG 냉열 적용에 관한 시뮬레이션 연구)

  • HAN, DANBEE;BYUN, HYUNSEUNG;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2020
  • As hydrogen utilization becomes more active recently, a large amount of hydrogen should be supplied safely. Among the three supply methods, liquefied hydrogen, which is an optimal method of storage and transportation convenience and high safety, has a low temperature of -253℃, which is complicated by the liquefaction process and consumes a lot of electricity, resulting in high operating costs. In order to reduce the electrical energy required for liquefaction and to raise the efficiency, hydrogen is cooled by using a mixed refrigerant in a precooling step. The electricity required for the precooling process of the mixed refrigerant can be reduced by using the cold energy of LNG. Actually, LNG cold energy is used in refrigeration warehouse and air liquefaction separation process, and a lot of power reduction is achieved. The purpose of this study is to replace the electric power by using LNG cold energy instead of the electric air-cooler to lower the temperature of the hydrogen and refrigerant that are increased due to the compression in the hydrogen liquefaction process. The required energy was obtained by simulating mixed refrigerant (MR) hydrogen liquefaction system with LNG cold heat and electric system. In addition, the power replacement rate of the electric process were obtained with the pressure, the temperature of LNG, the rate of latent heat utilization, and the hydrogen liquefaction capacity, Therefore, optimization of the hydrogen liquefaction system using LNG cold energy was carried out.

Process Design and Analysis of BOG Re-liquefaction System with Pre-liquefaction of NGL (NGL 분리식 BOG 재액화 공정 고안 및 해석)

  • Yun, Sang-Kook
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.32-37
    • /
    • 2015
  • The boil-off-gases(BOG) in cryogenic LNG storage tanks are generating continuously due to the heat leakage and need to be re-liquefied by the effective way. As the present method to reliquefy BOG is using LNG cold energy to be supplied after low pressure primary pump, the demand of LNG flow rate should be over 10 times of BOG produced rate to reliquefy it. This research invented new effective re-liquefaction system having only 3~4 times of LNG flow rate against unit BOG, that the pre-liquefaction process of NGL and the use of high pressure LNG cold energy after secondary pump. By the analysis, it could be high efficient reliquefying system for all amount of BOG treatment even during the summer time, and improvement of operation safety and efficiency of LNG terminal.

Effects of ortho-para hydrogen conversion on hydrogen liquefaction performance (Ortho-para 수소변환이 수소액화성능에 미치는 영향)

  • 최항집;강병하;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • A direct hydrogen liquefaction equipment has been developed and tested, which consists of a GM refrigerator, a liquefaction vessel, a radiation shield, a cryostat, and an ortho-para converter with catalyst. The effect of ortho-para hydrogen conversion on the performance of hydrogen liquefaction has been investigated. The time needed for the hydrogen liquefaction process with hydrogen pressure charge of 4 atm was delayed to around 75 minutes, and the liquefied mass flow rate of the hydrogen was about 0.0150∼ 0.0205 g/s when the hydrogen was liquefied with the direct hydrogen liquefaction system considering ortho-para conversion. With ortho-para conversion, the liquefied mass flow rate decreased up to 20%. Considering ortho-para conversion, there were up to 30% increase in the work input per unit liquefied mass flow rate. When the ortho-para conversion was considered, FOM decreased to be about 0.031∼0.045.

  • PDF

A Study on the BOG Re-liquefaction System based on the Reverse Brayton Refrigeration Cycle for LNG Carriers (역 브레이튼 냉동사이클을 이용한 LNG 운반선의 증발기체 재액화 시스템에 관한 연구)

  • Chin, Young-Wook
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.4
    • /
    • pp.149-154
    • /
    • 2007
  • The LNG carriers have been propelled by steam turbines and the LNG boil-off(BOG) has been used as fuel or vented. However, as the alternative propulsion systems such as diesel engines are being equipped on the LNG carriers for better fuel efficiency, a need for the LNG BOG re-liquefaction system that liquefies the BOG and sends the liquid BOG back to the LNG cargo has arisen in recent years. This study investigates the design of the BOG re-liquefaction system based on the reverse Brayton refrigeration cycle. The thermodynamic and heat exchanger analysis are carried out and the limitations to the system performance are discussed.

Process Analysis and Simulation for System of Air Liquefaction Separation Using LNG Cold Energy (LNG 냉열을 이용한 공기액화분리시스템의 시뮬레이션 및 공정 해석)

  • HAN, DANBEE;BAEK, YOUNGSOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.276-281
    • /
    • 2019
  • The process of separating oxygen and nitrogen from the air is mainly performed by electric liquefaction, which consumes a lot of electricity, resulting in higher operating costs. On the other hand, when used for cold energy of LNG, electric power can be reduced compared to the electric Linde cycle. Currently, LNG cold energy is used in the cold refrigeration warehouse, separation of air-liquefaction, and LNG cold energy generation in Japan. In this study, the system using LNG cold energy and the Linde cycle process system were simulated by PRO/II simulators, respectively, to cool the elevated air temperature from the compressor to about $-183^{\circ}C$ in the air liquefaction separation process. The required amount of electricity was compared with the latent heat utilization fraction of LNG, the LNG supply pressure, and the LNG cold energy usage. At the air flow rate of $17,600m^3/h$, the power source unit of the Linde cycle system was $0.77kWh/m^3$, compared with $0.3kWh/m^3$.