• 제목/요약/키워드: Liquefaction of wood

검색결과 12건 처리시간 0.016초

목재의 용액화와 접착제에의 응용 - 산촉매하에서 페놀에 의한 목재의 용액화 - (Liquefaction of Wood and It's Application for Adhesives - Acid-Catalyzed Liquefaction of Wood with Phenol -)

  • 한규성
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권2호
    • /
    • pp.88-93
    • /
    • 1995
  • Acid-catalysts were used to accelerate the liquefaction of wood with phenol. Sulfuric acid was quite excellent as a acid-catalyst of liquefaction of wood. It's proper dose was 3% of oven-dried weight of wood to get the 10% of target degree of residue, when the reaction time was 2 hours. The liquefaction of wood catalyzed with sulfuric acid was easily carried out at low temperature of 140$^{\circ}C$, but the degrees of residue decreased gradually with the increase of reaction temperature. The behaviors of liquefaction of oak and radiata pine were nearly same.

  • PDF

Effect of Phenol in the Liquefaction of Pine Bark by Ethylene Carbonate-Methanesulfonic Acid

  • Mun, Sung Phil;Hassan, El-Barbary M.
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권3호
    • /
    • pp.66-74
    • /
    • 2002
  • The effects of phenol during ethylene carbonate (EC) liquefaction of pine bark in the presence of methanesulfonic acid (MSA) as a catalyst were investigated. Liquefaction of pine bark using EC in the presence of acid catalyst was very difficult in comparison to wood. Mixing ethylene glycol (EG) with EC improved the liquefaction process, but the maximum liquefaction yield did not exceed 78%. Mixing 20~30% phenol with EC was very effective for the liquefaction and the residue was remarkably decreased. More than 95% of liquefaction was achieved when about 30% phenol was mixed with EC. The reaction conditions, such as catalyst concentration, liquefaction temperature and time, type of catalyst and liquefying agent, had a great influence on the liquefaction process. The results of the average molecular weights and the amount of combined phenols for the liquefied products indicated that sulfuric acid (SA) causes high condensation reactions compared to MSA.

목재의 용액화 (II) - 액화목재의 성분분석 - (Liquefaction of Wood (II) - Analysis of Liquefied Wood Components -)

  • 도금현;공영토
    • Journal of the Korean Wood Science and Technology
    • /
    • 제23권2호
    • /
    • pp.19-25
    • /
    • 1995
  • This research was carried out to investigate the methods of liquefaction with Pinus koraiensis, and chemical components of the liquefied wood by FT-IR analysis and pyrolysis-GC/MS. Acetylated wood powder was liquefied above 90% in phenol or m-cresol when treated at about 150$^{\circ}C$ for 30min., using some catalysts. Untreated wood powder was liquefied above 90% in phenol or m-cresol when treated at about 200$^{\circ}C$ for 60min., using some catalysts. The results of FTIR analysis, carbohydrates were terribly disintegrated, the other side lignin peaks were occurred in liquefied wood, particulary. The results of pyrolysis-GC/MS, the liquefied wood have clear four peaks, phenol, guaiacol, o-cresol and m-/p-cresol, due to degradation of lignin, particulary.

  • PDF

폐지 용액화물로부터 성분분리 및 분석 (The Analysis and Isolation of Component from Liquefied Wastepaper)

  • 장준복;양재경;임부국;이종윤
    • Journal of the Korean Wood Science and Technology
    • /
    • 제32권1호
    • /
    • pp.9-16
    • /
    • 2004
  • 본 연구는 폐지로부터 용액화물을 제조하고, 제조된 용액화물의 성분 분리 및 성상분석을 통해 용액화물의 효율적인 이용방안을 위한 기초자료 제공에 그 연구 목적이 있다. 폐지의 액화에 있어 건식해리된 폐지보다 습식해리된 폐지의 액화가 비교적 용이하였으며, 이러한 이유는 습식해리된 폐지의 약품 침투가 비교적 용이하기 때문으로 판단된다. 폐지의 최적 액화조건은 폐지 1 g에 대해 크레졸 2 ㎖, 물 4 ㎖, 인산 0.5 ㎖로 첨가하여 190℃에서 60분간 액화 시킨 조건이 가장 우수하였다. 폐지 액화물 중 리그닌은 용제인 크레졸 층으로, 탄수화물은 수층으로 용해되어 각각 분리되며, 두 성분의 분리·회수는 비교적 용이하였다. 액화 폐지 중의 리그닌은 80% 이상 회수되었고, 회수된 리그닌의 분자량은 1,000 정도의 저분자량을 나타냈었다.

목질폐재(木質廢材)의 열(熱)-화학적(化學的) 탈(脫)산소-수소첨가반응(환원반응)에 의한 액화(液化)탄화수소의 합성(I) (Hydrocarbon Synthesis of Waste Lignocellulosics by Liquefaction Reaction of Thermochemical Deoxyhydrogenolysis Method(I))

  • 이병근
    • Journal of the Korean Wood Science and Technology
    • /
    • 제18권4호
    • /
    • pp.79-85
    • /
    • 1990
  • Many kinds of acetosolv lignin including ricestraw and spruce lignin were pyrolyzed. and liquefied in the autoclave reactor using 50% tetralin and m-cresol solution respectively as soluble solvent and Co-Mo as catalyst. In order to promote deoxyhydrogenolysis reaction $H_2$ gas was supplied into the reactor. The ratio between lignin and the soluble solvent are lg and 10cc. The reaction conditions are $200^{\circ}-700^{\circ}C$ of reaction temperature, 10-50 atms of reaction pressure and 100-500rpm of the reactor stirrer. By the deoxyhydrogenolysis liquefaction reaction, the main chemical structures of lignin which are aryl-alkyl-${\beta}$-0-4 ether, phenylcoumaran and biphenyl etc. are easily destroyed into liqufied aromatic compounds and aliphatic compunds linked with aromatic compounds. The percent yield of monomeric phenols on the weight bvase of lignin reacted reached to 12-14% by the chemical analytic GC-MS etc.

  • PDF

액화리그닌의 성분분석 (Component Analysis of Liguefied Lignins)

  • 황병호;조국란;공영토;도금현
    • 임산에너지
    • /
    • 제18권1호
    • /
    • pp.17-24
    • /
    • 1999
  • 액화목재는 목재 및 목질계 자원으로부터 신소재 개발을 위한 새로운 유효이용법의 하나이다. 이 액화목재의 주요 성분변화를 조사하기 위한 실험으로서 액화 전후의 리그닌의 구조적 변화를 알기 위하여 잣나무 KP리그닌과 리그닌설포산을 액화시켜서 유기용매로 분리하고, IR, 1H(13C)-NMR, GC-MS분석기기로 분석하였다. 액화리그닌 중에는 다수의 페놀성 물질들 즉, diguaiacol, acetic acid phenyl ester, phenol, 1-phenyl ethanone 등이 분석되었다.

  • PDF

Biodegradability and Risk Assessment of Biomass-based Polymeric Materials

  • Han, Song Yi;Park, Chan Woo;Jang, Jae Hyuk;Lee, Seung Hwan
    • Journal of Forest and Environmental Science
    • /
    • 제31권4호
    • /
    • pp.297-302
    • /
    • 2015
  • With the intention to solve environmental problems caused by synthetic plastics from petroleum resources, biodegradable polyurethane foams and thermosetting moldings were prepared from biomass, such as wood and wheat bran by liquefaction method. Biodegradability of these biomass-based polymeric materials was investigated. In activated sludge, polyurethane foams from liquefied wheat bran and thermosetting molding from phenolated wood were decomposed approximately 14% and 29% for 20 days, respectively. One of the wood fungi, Coriolus versicolor was able to grow without supplemental nutrition, only with distilled water and polyurethane foam as a nutrition source. Risk assessments were also conducted and results showed that estrogenicity, mutagenicity, and carcinogenicity were not observed in the extractives of biomass- based polymeric materials.

참나무 크라프트 리그닌과 볏짚 아세토솔브 리그닌의 열-화학적 분해에 의한 방향족(Aromatic)과 지방족(Aliphatic)화합물의 합성 (Synthesis of Aromatic and Aliphatic Compound from Kraft Oak Lignin and Acetosolve Straw Lignin by Thermochemical Liquefaction)

  • 이병근
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권1호
    • /
    • pp.1-7
    • /
    • 1997
  • Kraft oak lignin and ricestraw lignin from acetosolve pulping were dissolved in 50/50 mixture of tetralin/m-cresol solvent. The dissolved lignin was reacted in the pressurized autoclave which was operating at $350{\sim}500^{\circ}C$ of reaction temperature and 10~20 atms of reaction pressure respectively_Hydrogen pressure of 60~80kg/$cm^2$ was exercising into the pressurized autoclave reactor to create thermochemical hydrogenolysis reaction. It was identified by GLC, GC-MS and HPLC that the alkyl-aryl-${\beta}$-O-4 ether bond of lignin was cleaved and degraded into various smaller molecules of aromatic compound such as phenols and cresols under the reaction conditions around $300^{\circ}C$ and 10 atms of reaction temoerature and pressure. Hydrogenolysis reaction of lignin compound which was done above $500^{\circ}C$ of reaction temperature and 20 atms of reaction pressure showed that the amount of aromatic compound such as phenols and cresols degraded from reactant lignin was decreasing with newly present and increasing water out of product mixtures. It was supposed that new aliphatic compound of high molecular weight hydrocarbon is composed due to higher reaction temperature and pressure of hydrogenolysis reaction such as $500^{\circ}C$ and 20 atms, even though it was almost impossible, to identify what kind of degraded products it was by HPLC.

  • PDF

석탄액화시 첨가제에 의한 수율 향상 효과 (Effects of Additives on Yield of Coal Liquefaction)

  • 김종원;명광식;김연순;심규성;한상도
    • 에너지공학
    • /
    • 제5권2호
    • /
    • pp.176-182
    • /
    • 1996
  • 소형의 고온 고압 반응장치에서의 석탄액화시 흑액, 리그닌, NaOH, 물, 나무 등을 첨가제로 사용하여 375$^{\circ}C$ 근처에서의 액체생성물의 수율과 비점분포를 분석하였다. 흑액을 석탄액화 과정 중에 첨가하게 되면 석탄액화율이 38.6% 정도 증가하나, 액화율 상승효과의 대부분은 NaOH 때문인 것으로 판단되며, 흑액 중에 포함된 황화합물은 액화과정에서 수소와 결합함으로서 휘발성의 자극성 악취를 발생시키기 때문에 불리한 요인이 될 수 있다. 액화공정에 물이 존재하면 액화 수율에는 변화가 없었으나 액화생성물 중에는 저비점 성분이 증가되며, 가스 중에는 CO가 줄고, $CO_2$성분이 증가되었다. 나무를 석탄액화시 첨가하면 생성물 중 가스의 비율이 증가하고 액체생성물도 다소 증가하게 되는데, 석탄전환율로 보면 나무의 첨가효과는 거의 무시할 수 있는 값이며, 액체 생성물 수율만으로 보면 375$^{\circ}C$에서는 3%, 40$0^{\circ}C$에서는 약 8%정토의 액체생성물의 수율 증가를 보여주었으며, 4$25^{\circ}C$에서는 가스생성물의 증가로 액체생성물의 오히려 감소하였다.

  • PDF

석탄액화시 바이오매스계 첨가제의 효과 (Effects of Biomass Additives on Yield of Coal Liquefaction)

  • 김종원;심규성;이상호;박기배
    • 태양에너지
    • /
    • 제18권3호
    • /
    • pp.161-167
    • /
    • 1998
  • 석탄액화시 나무, 리그닌, 흑액 등 바이오매스계 첨가제의 효과를 실험식적 규모의 고온, 고압 반응기에서 고찰하였다. 석탄액화시 리그닌계의 첨가는 석탄의 분해를 돕고, 액체생성물의 질을 높여준다. $400^{\circ}C$에서는 나무를 첨가하게 되면, 액체생성물이 8%정도 증가하지만, 그이상의 온도에서는 기체생성물의 증가로 액체생성물 수율이 줄어든다. 흑액은 액화수율을 증대시키기는 하지만, 그 증가율은 NaOH만을 첨가시킨 경우보다 낮았으며, $OH^-$의 존재 때문에 흑액중의 리그닌이 주는 효과가 그리 크지 않은 것으로 보인다.

  • PDF