• 제목/요약/키워드: Lipschitz spaces

검색결과 82건 처리시간 0.017초

ACCELERATED STRONGLY CONVERGENT EXTRAGRADIENT ALGORITHMS TO SOLVE VARIATIONAL INEQUALITIES AND FIXED POINT PROBLEMS IN REAL HILBERT SPACES

  • Nopparat Wairojjana;Nattawut Pholasa;Chainarong Khunpanuk;Nuttapol Pakkaranang
    • Nonlinear Functional Analysis and Applications
    • /
    • 제29권2호
    • /
    • pp.307-332
    • /
    • 2024
  • Two inertial extragradient-type algorithms are introduced for solving convex pseudomonotone variational inequalities with fixed point problems, where the associated mapping for the fixed point is a 𝜌-demicontractive mapping. The algorithm employs variable step sizes that are updated at each iteration, based on certain previous iterates. One notable advantage of these algorithms is their ability to operate without prior knowledge of Lipschitz-type constants and without necessitating any line search procedures. The iterative sequence constructed demonstrates strong convergence to the common solution of the variational inequality and fixed point problem under standard assumptions. In-depth numerical applications are conducted to illustrate theoretical findings and to compare the proposed algorithms with existing approaches.

ON SEMILOCAL CONVERGENCE OF A MULTIPOINT THIRD ORDER METHOD WITH R-ORDER (2 + p) UNDER A MILD DIFFERENTIABILITY CONDITION

  • Parida, P.K.;Gupta, D.K.;Parhi, S.K.
    • Journal of applied mathematics & informatics
    • /
    • 제31권3_4호
    • /
    • pp.399-416
    • /
    • 2013
  • The semilocal convergence of a third order iterative method used for solving nonlinear operator equations in Banach spaces is established by using recurrence relations under the assumption that the second Fr´echet derivative of the involved operator satisfies the ${\omega}$-continuity condition given by $||F^{\prime\prime}(x)-F^{\prime\prime}(y)||{\leq}{\omega}(||x-y||)$, $x,y{\in}{\Omega}$, where, ${\omega}(x)$ is a nondecreasing continuous real function for x > 0, such that ${\omega}(0){\geq}0$. This condition is milder than the usual Lipschitz/H$\ddot{o}$lder continuity condition on $F^{\prime\prime}$. A family of recurrence relations based on two constants depending on the involved operator is derived. An existence-uniqueness theorem is established to show that the R-order convergence of the method is (2+$p$), where $p{\in}(0,1]$. A priori error bounds for the method are also derived. Two numerical examples are worked out to demonstrate the efficacy of our approach and comparisons are elucidated with a known result.