• Title/Summary/Keyword: Lipid-transfer proteins

Search Result 24, Processing Time 0.023 seconds

Effect of combined mulberry leaf and fruit extract on liver and skin cholesterol transporters in high fat diet-induced obese mice

  • Valacchi, Giuseppe;Belmonte, Giuseppe;Miracco, Clelia;Eo, Hyeyoon;Lim, Yunsook
    • Nutrition Research and Practice
    • /
    • v.8 no.1
    • /
    • pp.20-26
    • /
    • 2014
  • Obesity is an epidemic disease characterized by an increased inflammatory state and chronic oxidative stress with high levels of pro-inflammatory cytokines and lipid peroxidation. Moreover, obesity alters cholesterol metabolism with increases in low-density lipoprotein (LDL) cholesterols and triglycerides and decreases in high-density lipoprotein (HDL) cholesterols. It has been shown that mulberry leaf and fruit ameliorated hyperglycemic and hyperlipidemic conditions in obese and diabetic subjects. We hypothesized that supplementation with mulberry leaf combined with mulberry fruit (MLFE) ameliorate cholesterol transfer proteins accompanied by reduction of oxidative stress in the high fat diet induced obesity. Mice were fed control diet (CON) or high fat diet (HF) for 9 weeks. After obesity was induced, the mice were administered either the HF or the HF with combination of equal amount of mulberry leaf and fruit extract (MLFE) at 500mg/kg/day by gavage for 12 weeks. MLFE treatment ameliorated HF induced oxidative stress demonstrated by 4-hydroxynonenal (4-HNE) and modulated the expression of 2 key proteins involved in cholesterol transfer such as scavenger receptor class B type 1 (SR-B1) and ATP-binding cassette transporter A1 (ABCA1) in the HF treated animals. This effect was mainly noted in liver tissue rather than in cutaneous tissue. Collectively, this study demonstrated that MLFE treatment has beneficial effects on the modulation of high fat diet-induced oxidative stress and on the regulation of cholesterol transporters. These results suggest that MLFE might be a beneficial substance for conventional therapies to treat obesity and its complications.

Signaling Molecules at the Conceptus-Uterine Interface during Early Pregnancy in Pigs

  • Seo, Heewon;Choi, Yohan;Shim, Jangsoo;Kim, Mingoo;Ka, Hakhyun
    • Journal of Embryo Transfer
    • /
    • v.27 no.4
    • /
    • pp.211-221
    • /
    • 2012
  • The process of embryo implantation requires physical contact and physiological communication between the conceptus trophectoderm and the maternal uterine endometrium. During the peri-implantation period in pigs, the conceptus undergoes significant morphological changes and secretes estrogens, the signal for maternal recognition of pregnancy. Estrogens secreted from the conceptus act on uterine epithelia to redirect $PGF_2{\alpha}$, luteolysin, secretion from the uterine vasculature to the uterine lumen to prevent luteolysis as well as to induce expression of endometrial genes that support implantation and conceptus development. In addition, conceptuses secrete cytokines, interferons, growth factors, and proteases, and in response to these signals, the uterine endometrium produces hormones, protease inhibitors, growth factors, transport proteins, adhesion molecules, lipid molecules, and calcium regulatory molecules. Coordinated interactions of these factors derived from the conceptus and the uterus play important roles in the process of implantation in pigs. To better understand mechanism of implantation process in pigs, this review provides information on signaling molecules at the conceptus-uterine interface during early pregnancy, including recently reported data reported.

Crystallization and X-ray crystallographic analysis of the PH-like domain of lipid transfer protein anchored at membrane contact sites from Saccharomyces cerevisiae

  • Tong, Junsen;Im, Young Jun
    • Biodesign
    • /
    • v.5 no.4
    • /
    • pp.136-140
    • /
    • 2017
  • Lam6 is a member of sterol-specific ${\underline{l}ipid$ transfer proteins ${\underline{a}}nchored$ at ${\underline{m}ebrane$ contact sites (LAMs). Lam6 localizes to the ER-mitochondria contact sites by its PH-like domain and the C-terminal transmembrane helix. Here, we purified and crystallized the Lam6 PH-like domain from Saccharomyces cerevisiae. To aid crystallization of the Lam6 PH-like domain, T4 lysozyme was fused to the N-terminus of the Lam6 PH-like domain with a short dipeptide linker, GlySer. The fusion protein was crystallized under the condition of 0.1 M HEPES-HCl pH 7.0, 10% (w/v) PEG 8000, and 0.1 M $Na_3$ Citrate at 293K. X-ray diffraction data of the crystals were collected to $2.4{\AA}$ resolution using synchrotron radiation. The crystals belong to the orthorhombic space group $P2_12_12_1$ with unit cell parameters $a=59.5{\AA}$, $b=60.1{\AA}$, and $c=105.6{\AA}$. The asymmetric unit contains one T4L-Lam6 molecule with a solvent content of 58.7%. The initial attempt to solve the structure by molecular replacement using the T4 lysozyme structure was successful.

Cross-Reactivity and Digestive Enzyme Stability of Peach, Korean Cherry, and Hot Pepper (복숭아, 앵두, 고추의 교차반응성 및 소화효소안정성)

  • Kim, Eun-Jung;Ko, Yu-Jin;Lee, Gyeong-Ran;Seol, Hui-Gyeong;Kang, Chang-Min;Ryu, Chung-Ho
    • Journal of Life Science
    • /
    • v.22 no.11
    • /
    • pp.1487-1492
    • /
    • 2012
  • Peach (Prunus persica) has been recognized as a food allergen for over 20 years. However, there is little information about cross-reactivity with other foods. The aim of this study was to research cross-reactivity of Korean cherry and hot pepper on patients allergic to peach and its stability by digestive enzyme treatment. Peach, Korean cherry, and hot pepper proteins were extracted and separated by Tricine-SDS-PAGE analysis. The protein extracts had a wide range of molecular weight, from 3 kDa to more than 26 kDa, and displayed different patterns of protein bands on Tricine-SDS-PAGE. Peach allergic patients' sera were used to detect the allergenic protein in three samples. Three peach allergic patients' sera reacted strongly with 9 kDa protein of peach, which was the expected lipid transfer protein (LTP) as the major allergen of peach and was detected with anti-LTP1 polyclonal antibody. However, the reactivity of the 23 kDa protein in Korean cherry and hot pepper protein was stronger than that of the 9 kDa protein. The stability of protein extracts on digestive enzyme treatment was examined using simulated gastric fluids (SGF) and simulated intestinal fluids (SIF), in which digestive enzyme stability is one of the characteristics of allergen potentially causing food allergy. Findings confirmed that allergenic proteins in peach, Korean cherry, and hot pepper were not completely digested by SGF and SIF treatments from results of SDS-PAGE analysis. These results confirmed that Korean cherry and hot pepper might cause cross-reactivity in peach allergic patients, and its allergenic proteins have stability against digestive enzymes.