• Title/Summary/Keyword: Lipid phase

Search Result 261, Processing Time 0.027 seconds

Production of the Fungal Lipid Containing ${\gamma}-Linolenic$ Acid from Mucor sp. KCTC 8405P (Mucor sp. KCTC 8405P에 의한 ${\gamma}-Linolenic$ Acid 함유 곰팡이 유지의 생산)

  • Park, Jong-Hyun;Shin, Hyun-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.326-329
    • /
    • 1992
  • Mucor sp. KCTC 8405P was cultivated in a jar fermentor for the production of fungal lipid containing ${\gamma}-linolenic$ acid with feeding the glucose solution periodically. The transition of the fungal growth into the mycelial phase from yeast-like growth was achieved by pH shift after the first two day of cultivation in the low pH medium and then lipid accumulation was accelerated until the seven day of cultivation, when the glucose in the culture broth was almost consumed. With the culture conditions applied in this experiment, biomass of 99.3 g/l by the dry cell weight and the total extractable lipid of 38.0 g containing 3.5 g/l ${\gamma}-linolenic$ acid were obtained.

  • PDF

Effect of Bovine Serum Albumin on the Stability of Methotrexate-encapsulated Liposomes

  • Kim, Chong-Kook;Kim, Han-Sung;Lee, Beum-Jin;Han, Jeong-Hee
    • Archives of Pharmacal Research
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 1991
  • The effect of bovine serum albumin (BSA) on the encapsulation efficiency and stability of liposomes containing methotrexate (MTX) having different surface charges and cholesterol contents were investigated. The encapsulation efficiency of MTX was lower and the release of MTX was faster by the addition of BSA. The leaking of MTX from lipid bilayer depends upon the BSA concentrations. These results may be derived from the interaction of BSA with lipid bilayers. The dynamic structural changes of BSA were monitored indirectly using circular dichroism spectra. Observed dynamic structural changes of BSA with liposomes are presumed to reflect the interaction of BSA with liposomes. Negatively charged liposomes have more strong interaction with BSA than neutral and positively charged liposomes. BSA attacks lipid bilayers whether it is at the inner or at the outer phase of lipid bilayer and induces leakage of entrapped MTX. Especially, negatively charged liposomes are more sensitive than others. The inclusion of cholesterol in the lipid layers inhibits the interaction of BSA with liposomes and shows protective effect against BSA-induced leakage of MTX. To endure the attacking of BSA liposomes as drug carriers should be made using cholesterol.

  • PDF

Effects of Fertilization on Physiological Parameters in American Sycamore (Platanus occidentalis) during Ozone Stress and Recovery Phase

  • Han, Sim-Hee;Kim, Du-Hyun;Lee, Jae-Cheon;Kim, Pan-Gi
    • Journal of Ecology and Environment
    • /
    • v.32 no.3
    • /
    • pp.149-158
    • /
    • 2009
  • American sycamore seedlings were grown in chambers with two different ozone concentrations ($O_3$-free air and air with additional $O_3$) for 45 days. Both the control and the $O_3$ chambers included non-fertilized and fertilized plants. After 18 days of $O_3$ fumigation, seedlings were placed in a clean chamber for 27 days. Seedlings under ozone fumigation showed a significant decrease in pigment contents and photosynthetic activity, and a significant increase in lipid peroxidation. Fertilization enhanced physiological damage such as the inhibition of photosynthetic activity and the increase of lipid peroxidation under ozone fumigation. During the recovery phase, the physiological damage level of seedlings increased with ozone fumigation. In addition, physiological damage was observed in the fertilized seedlings. Superoxide dismutase (SOD) and glutathione reductase (GR) activities of $O_3$-treated seedlings increased up to 33.8% and 16.3% in the fertilized plants. The increase of SOD activity was higher in the fertilized plants than in the non-fertilized plants. Negative effects of ozone treatment were observed in the biomass of the leaves and the total dry weight of the fertilized sycamore seedlings. The $O_3$-treated seedlings decreased in stem, root and total dry weight, and the loss of biomass was statistically significant in the fertilized plants. In conclusion, physiological disturbance under normal nutrient conditions has an effect on growth response. In contrast, in conditions of energy shortage, although stress represents a physiological inhibition, it does not seem to affect the growth response.

Inhibitory effect of ethanolic extract of Abeliophyllum distichum leaf on 3T3-L1 adipocyte differentiation

  • Thomas, Shalom Sara;Eom, Ji;Sung, Nak-Yun;Kim, Dong-Sub;Cha, Youn-Soo;Kim, Kyung-Ah
    • Nutrition Research and Practice
    • /
    • v.15 no.5
    • /
    • pp.555-567
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Abeliophyllum distichum is a plant endemic to Korea, containing several beneficial natural compounds. This study investigated the effect of A. distichum leaf extract (ALE) on adipocyte differentiation. MATERIALS/METHODS: The cytotoxic effect of ALE was analyzed using cell viability assay. 3T3-L1 preadipocytes were differentiated using induction media in the presence or absence of ALE. Lipid accumulation was confirmed using Oil Red O staining. The mRNA expression of adipogenic markers was measured using RT-PCR, and the protein expressions of mitogen-activated protein kinase (MAPK) and peroxisome proliferator-activated receptor gamma (PPAR𝛾) were measured using western blot. Cell proliferation was measured by calculating the incorporation of Bromodeoxyuridine (BrdU) into DNA. RESULTS: ALE reduced lipid accumulation in differentiated adipocytes, as indicated by Oil Red O staining and triglyceride assays. Treatment with ALE decreased the gene expression of adipogenic markers such as Ppar𝛾, CCAAT/enhancer binding protein alpha (C/ebp𝛼), lipoprotein lipase, adipocyte protein-2, acetyl-CoA carboxylase, and fatty acid synthase. Also, the protein expression of PPAR𝛄 was reduced by ALE. Treating the cells with ALE at different time points revealed that the inhibitory effect of ALE on adipogenesis is higher in the early period treatment than in the terminal period. Furthermore, ALE inhibited adipocyte differentiation by reducing the early phase of adipogenesis and mitotic clonal expansion. This was indicated by the lower number of cells in the Synthesis phase of the cell cycle (labeled using BrdU assay) and a decrease in the expression of early adipogenic transcription factors such as C/ebp𝛽 and C/ebp𝛿. ALE suppressed the phosphorylation of MAPK, confirming that the effect of ALE was through the suppression of early phase of adipogenesis. CONCLUSIONS: Altogether, the results of the present study revealed that ALE inhibits lipid accumulation and may be a potential agent for managing obesity.

Calcium Mobilization Inhibits Lipid Accumulation During the Late Adipogenesis via Suppression of PPARγ and LXRα Signalings

  • Kim, Seung-Jin;Choi, Ho-Jung;Jung, Chung-Hwan;Park, Sung-Soo;Cho, Seung-Rye;Oh, Se-Jong;Kim, Eung-Seok
    • Food Science of Animal Resources
    • /
    • v.30 no.5
    • /
    • pp.787-794
    • /
    • 2010
  • Calcium plays a role as a signaling molecule in various cellular events. It has been reported that calcium suppresses adipocyte differentiation only in the early phase of adipogenesis. Herein, we demonstrate that treatment of A23187, a mobilizer of intracellular calcium, on day 4 post adipocyte differentiation could still reduce lipid accumulation in differentiating 3T3-L1 cells for 48 h. In addition, luciferase reporter gene and RT-Q-PCR assays demonstrate that A23187 can selectively inhibit transcriptional activities and expression of PPAR$\gamma$ and LXR$\alpha$, suggesting that A23187 may reduce lipid accumulation in the late phase of adipogenesis via downregulation of PPAR$\gamma$ and LXR$\alpha$ expression and transactivation. Moreover, inhibition of HDAC activity by trichostatin A (TSA) partially blocked A23187-mediated downregulation of transcriptional activities of PPAR$\gamma$ and LXR$\alpha$. Together, our data demonstrate that calcium mobilization inhibits expression and transcriptional activities of PPAR$\gamma$ and LXR$\alpha$, resulting in reduced lipid accumulation in differentiating adipocytes, and thus, mobilization of intracellular calcium in adipocytes may serve as a new preventive and therapeutic approach for obesity.

Effects of Light Quality of a Light-Emitting Diode (LED) on Carbohydrate, Protein, and Lipid Contents of Tetraselmis suecica and T. tetrathele (발광다이오드(LED) 파장에 따른 Tetraselmis suecica와 T. tetrathele의 탄수화물, 단백질 및 지질 함량에 미치는 영향)

  • Kyong Ha Han;Seok Jin Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • To establish a culture system with enhanced cellular nutrition, we investigated the effects of light quality (blue, 450 nm; yellow, 590 nm; and red, 630 nm) of a light-emitting diode (LED) on the biochemical composition of Tetraselmis suecica and T. tetrathele. The protein content of both species was higher (42-69%) than the content of other biochemical substances under all wavelengths. Carbohydrate, protein, and lipid contents were higher under the yellow wavelength, which showed a low growth rate, than those under other wavelengths. The contents of all biochemical substances were low under the red wavelength, which showed a high growth rate. These results indicated that protein synthesis occurs in response to decreased cell division rate, while lipid and carbohydrate synthesis occurs owing to altered chemical composition and enzymatic activity. Therefore, we suggested a two-phase LED culture system, which emitted red LED during the early-middle exponential phase and yellow LED during the late exponential and stationary phases, to increase the yield of useful biochemical substances of T. suecica and T. tetrathele.

Effect of Diets with Red Yeast Sweet Potato Powder Supplement on Fecal Amount and Lipid Metabolism in Rats Fed a High-fat Diet (홍국고구마가 고지방식이를 급여한 흰쥐의 배변량 및 지질대사에 미치는 영향)

  • Park, Ju-Hun;Choi, Sang-Yoon;Lee, Kyung-Won;Kim, Sung-Soo;Cho, Kyung-Dong;Han, Chan-Kyu
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.4
    • /
    • pp.487-493
    • /
    • 2012
  • This study was performed to investigate the effects of a diet with a red yeast sweet potato supplement on fecal amount and lipid metabolism in male Sprague-Dawley rats fed a high-fat diet for 10 weeks. Rats were fed a high-fat diet (15% fat) with additional lard (7%) and cholesterol (1%) based on AIN-93G basal diet (7% fat) for 6 weeks during the first phase. In the second phase, which lasted 4 weeks, the rats divided into four experimental groups which were composed of a high-fat diet group as a control (CON), a high-fat diet with 5% white-fleshed sweet potato supplement group (WFSP), a high-fat diet with 5% red yeast sweet potato supplement group (RYSP), and a high-fat diet with 5% purple-fleshed sweet potato supplement group (PFSP). The fecal amount of group RYSP increased significantly during the second phase compared to the other groups (p<0.05). The fecal total cholesterol (TC) and triglyceride (TG) content of group RYSP were also highest among all experimental groups. The serum TC and TG were shown to have the lowest levels in the group RYSP, and LDL-cholesterol levels were significantly decreased in groups RYSP and PFSP than in group CON (p<0.05). These results indicate that supplementation with red yeast sweet potato seemed to be effective in increasing feces and fecal lipid excretion, and also in decreasing serum lipid levels in rats fed a high-fat diet.

Effects of Residual Solvents in the Phase Transition, Transition Enthalpy, and Transition Temperature of Phospholipid Membranes (잔류 유기 용매가 모델 세포 지질막의 상전이, 상전이 엔탈피 및 상전이 온도에 미치는 영향)

  • An, Eun Seol;Choi, Jae Sun;Lee, Dong Kuk
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.2
    • /
    • pp.163-170
    • /
    • 2014
  • Lipid membranes composed of phosphatidylcholine (PC) are used in biophysical study to mimic cellular membranes and interactions between the membrane and chemicals, where organics solvents are used in dissolving lipids or chemicals. Later, solvents are removed from the solution under nitrogen gas at room temperature, followed by the further removal of the solvent at vacuum condition for several hours. In this process, some solvents are easily removed under described conditions above and others are required more severe conditions. In this study, $^{31}P$ solid-state nuclear magnetic resonance (SSNMR) techniques and differential scanning calorimetry (DSC) were used to see any changes in the line shapes of $^{31}P$ NMR spectra of multilamellar vesicles (MLVs) samples of POPC and in the phase change temperature of multilamellar vesicles (MLVs) of DPPC in DSC thermogram with or without any residual solvents. The thermodynamic parameters associated with the solvents did exhibit noticeable changes depending on solvent types. Thus, it is concluded that solvents should be carefully chosen and removed completely and experimental results should also be interpreted with caution particularly for the experiments investigating lipid phase changes and related topics.

Chemical and Volatile Characterization of Structured Lipid from Soybean Oil Containing Conjugated Linoleic Acid

  • Lee, Jeung-Hee;Lee, Jong-Ho;Lee, Ki-Teak
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.3
    • /
    • pp.219-224
    • /
    • 2003
  • Structured lipid (SL) produced from soybean oil was enriched with conjugated linoleic acid (CLA). The SL had 21.9 mol % CLA isomers incorporated into SL-soybean after the 24-h reaction. Removal of tocopherols (73~84% loss from original soybean oil) was observed in the SL. Electronic nose can discriminate the aroma of SL-soybean from that of soybean oil. Many oxidative volatiles including pentenal, octenal, 2,4-decandienal, and nonenal were found in SL-soybean. Electronic nose, which is valuable for composite aroma analysis, can provide flavor information together with GC-MS that is useful for qualitative or quantitative analysis of each odor compound in SL.

Ginseng Extract Protects Unsaturated Fatty acid from Decomposition Caused by Iron-Mediated Lipid Peroxidation

  • Okada, Shi-Geru;Zhang, Da-Xian
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.57-62
    • /
    • 1998
  • We hypothesized the primary effect of ginseng was to protect cell membrane fatty acids from decomposition caused by free radicals. To confirm the antioxidant effect of ginseng, we measured the inhibitory effect on the formation of thiobarbituric acid-reactive substances, an indicator of lipid peroxidation, and evaluated the free radical scavenging effect of ginseng by electron spin resonance spectrometer, and gas chromatography. The results showed that thiobarbituric acid-reactive substances formed and the loss of arachidonic acid during lipid peroxidation, and that hydroxyl (-like) radical peak formed by the iron complex (ferric nitrilotriacetate, an known free radical generator in vitro) were completely inhibited by ginseng extract. This antioxidant effect of ginseng may be responsible for its wide pharmacological actions in clinical practice. As the free radical reactions in general are rapid and non-specific, ginseng seems to act as a normalizer, rather than a general tonic, at the stages of acute or chronic active phase of the various diseases.

  • PDF