• Title/Summary/Keyword: Lipid glycerol

Search Result 136, Processing Time 0.024 seconds

Anti-obesity effect of resveratrol-amplified grape skin extracts on 3T3-L1 adipocytes differentiation

  • Zhang, Xian-Hua;Huang, Bo;Choi, Soo-Kyong;Seo, Jung-Sook
    • Nutrition Research and Practice
    • /
    • v.6 no.4
    • /
    • pp.286-293
    • /
    • 2012
  • Resveratrol (3,4,5-trihydroxy-trans-stilbene), a phytoalexin found in grape skin, grape products, and peanuts as well as red wine, has been reported to have various biological and pharmacological properties. The purpose of this study was to investigate the anti-obesity effect of resveratrol-amplified grape skin extracts on adipocytes. The anti-obesity effects of grape skin extracts were investigated by measuring proliferation and differentiation in 3T3-L1 cells. The effect of grape skin ethanol extracts on cell proliferation was detected by the MTS assay. The morphological changes and degree of adipogenesis of preadipocyte 3T3-L1 cells were measured by Oil Red-O staining assay. Treatment with extracts of resveratrol-amplified grape skin decreased lipid accumulation and glycerol-3-phosphate dehydrogenase activity without affecting 3T3-L1 cell viability. Grape skin extract treatment resulted in significantly attenuated expression of key adipogenic transcription factors, including peroxisome proliferator-activated receptor, CCAAT/enhancer-binding proteins, and their target genes (FAS, aP2, SCD-1, and LPL). These results indicate that resveratrol-amplified grape skin extracts may be useful for preventing obesity by regulating lipid metabolism.

Anti-adipogenic Effect of Hydrolysate Silk Fibroin in 3T3-L1 Cells

  • Chon, Jeong-Woo;Lee, Kwang-Gill;Park, Yoo-Kyoung;Park, Kyung-Ho;Yeo, Joo-Hong
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.21 no.2
    • /
    • pp.169-174
    • /
    • 2010
  • Hydrolysate silk fibroin (HSF) is a fibrous protein composed of parallel $\beta$-structures and is made from pure silk elements including 18 amino acids, with glycine, alanine, and serine comprising of over 80% of the amino acids. Numerous studies have documented a range of effects of HSF, including moisturizing, antioxidant activity, nervous system disorders, and many more. We investigated whether HSF has anti-obesity effects in vitro. The effects of HSF inhibition on lipid accumulation and acceleration of lipid degradation in 3T3-L1 cells were studied. Treatment of 3T3-L1 cells with HSF caused significant inhibition of cell viability, an increase in glycerol release, and a decreased in adipocyte differentiation. Moreover HSF stimulated downregulated of adipogenic enzyme expressions (PPAR${\gamma}$ and C/EBP${\alpha}$) and up-regulated of fatty oxidation enzyme expressions (CPT-1 and UCP-2). Based on these results, hydrolysate silk fibroin can be suggested as a potential therapeutic substance as part of a prevention or treatment strategy for obesity.

Immunoliposomes Carrying Plasmid DNA : Preparation and Characterization

  • Kim, Na-Hyung;Park, Hyo-Min;Chung, Soo-Yeon;Go, Eun-Jung;Lee , Hwa-Jeong
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1263-1269
    • /
    • 2004
  • The objective of this study was to characterize immunoliposomes carrying plasmid DNA with optimal encapsulation efficiency and antibody density. Plasmid DNA was encapsulated by the freezing/thawing method into liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycerol- 3-phosphocholine), DDAB (didodecyl dimethyl ammonium bromide), DSPE-PEG 2000 (distearoyl phosphatidyl ethanolamine polyethylene glycol 2000) and DSPE-PEG 2000-maleimide. The liposomes carrying plasmid DNA were extruded through two stacked polycarbonate filters, of different pore size, to control the liposome size. Then, rat IgG molecules were conjugated to the liposomes. The immunoliposomes containing plasmid DNA were separated from the free plasmid DNA and unconjugated IgG by Sepharose CL-4B column chromatography. The DNA amount encapsulated was affected by DDAB (cationic lipid) concentration, the initial amount of plasmid DNA between 10 ${\mu}g$ and 200 ${\mu}g$, the total lipid amount and plasmid DNA size, but not significantly by liposome size. By varying the ratio of DSPE-PEG 2000-maleimide to IgG, the number of IgG molecules per liposome was changed significantly.

Studies on the Lipid Component in Root of Platycodon Glaucum N. (도라지 뿌리 중의 지질(脂質) 구성성분(構成成分)에 관한 연구(硏究))

  • Jung, Ock-Hee;Lee, Mahn-Jung;Han, Jae-Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.4 no.1
    • /
    • pp.35-44
    • /
    • 1975
  • This experiment was purposed to examine the natures of lipids in Platycodon glaucum root, one of the well-known vegetable food stuffs in Korea. The results on the lipids obtained as forms of esters of glycerol or sterol and their derivatives by the methods of T. L. C and G. C are summarized as follows. 1. The nature of lipids was shown as a yellow- brownish color, a little viscosity and the characteristic odor of Platycodon glaucum. 2. In case of the neutral lipid part, it was composed with the ratio of T. G 77.3%, D. G 4.9%, M. G 4.0%, S. E 8.7%, F. F. A 2.5%, and S 2.4%. 3. Considering the composition of fatty acids in T. G, the amount of saturated fatty acids was about 52.0%, and that of unsaturated about 14.0%. And the principal fatty acid of T. G remained primarily as palmitic and stearic acid.

  • PDF

Metabolites of Kimchi Lactic Acid Bacteria, Indole-3-Lactic Acid, Phenyllactic Acid, and Leucic Acid, Inhibit Obesity-Related Inflammation in Human Mesenchymal Stem Cells

  • Moeun Lee;Daun Kim;Ji Yoon Chang
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.306-313
    • /
    • 2024
  • Given the diversity of vegetables utilized in food fermentation and various lactic acid bacteria (LAB) populations in these materials, comprehensive studies on LAB from vegetable foods, including kimchi, are imperative. Therefore, this study aimed to investigate the obesity-related inflammation response of three metabolites-phenyllactic acid (PLA), indole-3-lactic acid (ILA), and leucic acid (LA)-produced by LAB (Companilactobacillus allii WiKim39 and Lactococcus lactis WiKim0124) isolated from kimchi. Their effects on tumor necrosis factor-α-induced changes in adipokines and inflammatory response in adipose-derived human mesenchymal stem cells were examined. The study results showed that PLA, ILA, and LA, particularly PLA, effectively reduced lipid accumulation and triglyceride, glycerol, free fatty acid, and adiponectin levels. Furthermore, the identified metabolites were found to modulate the expression of signaling proteins involved in adipogenesis and inflammation. Specifically, these metabolites were associated with enriched expression in the chemokine signaling pathway and cytokine-cytokine receptor interaction, which are critical pathways involved in regulating immune responses and inflammation. PLA, ILA, and LA also suppressed the secretion of pro-inflammatory cytokines and several inflammatory markers, with the PLA-treated group exhibiting the lowest levels. These results suggest that PLA, ILA, and LA are potential therapeutic agents for treating obesity and inflammation by regulating adipokine secretion and suppressing pro-inflammatory cytokine production.

Standardized rice bran extract improves hepatic steatosis in HepG2 cells and ovariectomized rats

  • Lim, Dong Wook;Jeon, Hyejin;Kim, Minji;Yoon, Minseok;Jung, Jonghoon;Kwon, Sangoh;Cho, Suengmok;Um, Min Young
    • Nutrition Research and Practice
    • /
    • v.14 no.6
    • /
    • pp.568-579
    • /
    • 2020
  • BACKGROUD/OBJECTIVES: Hepatic steatosis is the most common liver disorder, particularly in postmenopausal women. This study investigated the protective effects of standardized rice bran extract (RBS) on ovariectomized (OVX)-induced hepatic steatosis in rats. MATERIALS/METHODS: HepG2 cells were incubated with 200 µM oleic acid to induce lipid accumulation with or without RBS and γ-oryzanol. OVX rats were separated into three groups and fed a normal diet (ND) or the ND containing 17β-estradiol (E2; 10 ㎍/kg) and RBS (500 mg/kg) for 16 weeks. RESULTS: RBS supplementation improved serum triglyceride and free fatty acid levels in OVX rats. Histological analysis showed that RBS significantly attenuated hepatic fat accumulation and decreased hepatic lipid, total cholesterol, and triglyceride levels. Additionally, RBS suppressed the estrogen deficiency-induced upregulation of lipogenic genes, such as sterol regulatory element-binding protein 1 (SREBP1), acetyl-CoA carboxylase 1, fatty acid synthase, glycerol-3-phosphate acyltransferase, and stearoyl-CoA desaturase 1. CONCLUSIONS: RBS and γ-oryzanol effectively reduced lipid accumulation in a HepG2 cell hepatic steatosis model. RBS improves OVX-induced hepatic steatosis by regulating the SREBP1-mediated activation of lipogenic genes, suggesting the benefits of RBS in preventing fatty liver in postmenopausal women.

Downregulation of Hepatic De Novo Lipogenesis and Adipogenesis in Adipocytes by Pinus densiflora Bark Extract

  • Ahn, Hyemyoung;Jeong, Jeongho;Moyo, Knowledge Mudhibadi;Ryu, Yungsun;Min, Bokkee;Yun, Seong Ho;Kim, Hwa Yeon;Kim, Wooki;Go, Gwang-woong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.1925-1931
    • /
    • 2017
  • Korean red pine (Pinus densiflora) bark extract, PineXol (PX), was investigated for its potential antioxidant and anti-inflammation effects in vitro. It was hypothesized that PX treatment ($25-150{\mu}g/ml$) would reduce the lipid synthesis in HepG2 hepatocytes as well as lipid accumulation in 3T3-L1 adipocytes. Hepatocytes' intracellular triglycerides and cholesterol were decreased in the PX $150{\mu}g/ml$ treatment group compared with the control (p < 0.05). Consequently, de novo lipogenic proteins (acetyl-CoA carboxylase 1, stearoyl-CoA desaturase 1, elongase of very long chain fatty acids 6, glycerol-3-phosphate acyltransferase 1, and sterol regulatory element-binding protein 1) were significantly decreased in hepatocytes by PX $150{\mu}g/ml$ treatment compared with the control (p < 0.05). In differentiated 3T3-L1 adipocytes, the lipid accumulation was significantly attenuated by all PX treatments (p < 0.01). Regulators of adipogenesis, including CCAAT-enhancer-binding proteins alpha, peroxisome proliferatoractivated receptor gamma, and perilipin, were decreased in PX $100{\mu}g/ml$ treatment compared with the control (p < 0.05). In conclusion, PX might have anti-obesity effects by blocking hepatic lipogenesis and by inhibiting adipogenesis in adipocytes.

Anti-oxidation and Fat Accumulation Inhibitory Effects of Silbi-san (실비산의 항산화 및 지방축적 억제 효과)

  • Kim, Geon-Woo;Woo, Chang-Hoon;Kim, Young-Jun;An, Hee-Duk
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.30 no.4
    • /
    • pp.41-53
    • /
    • 2020
  • Objectives The purpose of this study was to investigate the effects of Silbi-san on the antioxidant and fat accumulation inhibition and to analyze the anti-obesity effect by analyzing the changes in serum lipid composition in obese mice. Methods We compared contents of phytochemicals like total polyphenols and total flavonoid and antioxidant activities such as 2,2-dipheny-1-picrylhydrazyl and 2.2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) radical scavenging activity. After Silbi-san in 3T3-L1 cells in vitro and mouse adipose tissue ex vivo, we quantified intracellular triglyceride accumulation and lipolysis. Moreover, the anti-obesity activity though inhibiting pancreatic lipase were analyzed. In 3T3-L1 cells, morphological changes showed that control cells had many lipid while cells treated with Silbi-san had less lipid accumulation. 30% EtOH Silbi-san treatment also suppressed the fat absorption by inhibiting the activity of pancreatic lipase and led to high lipolysis through promoting glycerol release. The experimental group was divided into four groups: Normal group fed normal feed, Control group fed 60% high fat diet (HFD) and distilled water, drug group fed 60% high fat diet and 200 mg/kg of Silbi-san water extract, drug group fed 60% HFD and 200 mg/kg of Silbi-san 30% ethanol extract. Results Serum total cholesterol content and serum low density lipoprotein-cholesterol content were significantly decreased in the Silbi-san extract group compared to the control group, serum high density lipoprotein-cholesterol content was significantly increased in Silbi-san extract group. Conclusions In this study, the antioxidant and fat accumulation inhibitory effects of Silbi-san were confirmed.

Inhibitory Effect of Dihydroartemisinin, An Active Ingredient of Artemisia annua, on Lipid Accumulation in Differentiating 3T3-L1 Preadipocytes

  • Jang, Byeong-Churl
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Objectives: Artemisinin and its derivatives extracted from Artemisia annua, a Chinese herbal medicine, have variable biological effects due to structural differences. Up to date, the anti-obesity effect of dihydroartemisinin (DHA), a derivative of artemisinin, is unknown. The purpose of this study was to investigate the anti-adipogenic and lipolytic effects of DHA on 3T3-L1 preadipocytes. Methods: Oil Red O staining and AdipoRed assay were used to measure lipid accumulation and triglyceride (TG) content in 3T3-L1 cells, respectively. Cell count analysis was used to determine the cytotoxicity of 3T3-L1 cells. Western blot and real-time reverse transcription polymerase chain reaction analyses were used to analyze the expression of protein and mRNA in 3T3-L1 cells, respectively. Results: DHA at 5 μM markedly inhibited lipid accumulation and reduced TG content in differentiating 3T3-L1 cells with no cytotoxicity. Furthermore, DHA at 5 μM inhibited the expression of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A as well as the phosphorylation of signal transducer and activator of transcription-3 (STAT-3) in differentiating 3T3-L1 cells. Moreover, while DHA at 5 μM had no effect on the mRNA expression of adiponectin, it strongly suppressed that of leptin in differentiating 3T3-L1 cells. However, DHA at 5 μM had no lipolytic effect on differentiated 3T3-L1 cells, as assessed by no enhancement of glycerol release. Conclusions: These results demonstrate that DHA at 5 μM has a strong anti-adipogenic effect on differentiating 3T3-L1 cells through the reduced expression and phosphorylation of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3.

Rosa acicularis Leaves Exert Anti-obesity Activity through AMPK-dependent Lipolysis and Thermogenesis in Mouse Adipocytes, 3T3-L1 Cells

  • Jeong Won Choi;Hyeok Jin Choi;Gwang Hyeon Ryu;Seung Woo Im;Jae Won Lee;Jin Boo Jeong
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2023.04a
    • /
    • pp.46-46
    • /
    • 2023
  • It has been reported that Rosa acicularis has anti-obesity activity by inhibiting the digestive lipase activity. However, there is a lack of clear in vitro studies regarding the anti-obesity activity of Rosa acicularis. Therefore, in this study, we aimed to verify the anti-obesity activity of Rosa acicularis leaves (RAL) and elucidate its mechanism of action in 3T3-L1 preadipocytes. RAL dose-dependently inhibited the accumulation of lipid droplets and triacylglycerol. RAL had no effect on cell proliferation and survival in undifferentiated 3T3-L1 cells, but it inhibited cell proliferation in differentiating 3T3-L1 cells. RAL increased ATGL, p-HSL, and HSL, and decreased perilipin-1 in differentiating 3T3-L1 cells. In addition, RAL reduced lipid droplet accumulation and increased free glycerol content in differentiated 3T3-L1 cells. RAL increased ATGL and HSL in differentiated 3T3-L1 cells. Also, RAL increased p-AMPK, PPARγ, UCP-1, and PGC-1α in differentiating 3T3-L1 cells. AMPK inhibition by Compound C attenuated RAL-mediated increase of ATGL, HSL, PPARγ, and UCP-1 in 3T3-L1 cells. Taken together, it is thought that RAL may inhibit lipid accumulation through lipolysis and thermogenesis via the activation of AMPK in adipocytes.

  • PDF