• Title/Summary/Keyword: Lipase activity

Search Result 591, Processing Time 0.022 seconds

The Improvement of surface activity and Emulsification Activity by Transformation of Lipase Gene in Klebsiella sp. KCL-1, Oil-Degrading Bacterium. (Lipase gene의 도입에 의한 유류분해세균 Klebsiella sp. KCL-1의 표면활성과 유화력 향상)

  • 정수열
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.834-839
    • /
    • 2004
  • To improve and oil degrading activity, the lipase gene from Pseudomonase sp. was transformed into Klebsiella sp. KCL-l, an oil degrading bacterium. The selected trasformant was named as a KCL-1/pET-Lip. The surface tension of culture broth of KCL-1/pET-Lip was decreased to 33 dyne/cm from 55 dyne/cm using 4% (v/v) soybean oil as sole carbon source. The surface tension were 44 and 37.5 dyne/cm, to 2% (w/v) glucose and 4% (v/v) kerosene medium, respectively. The emulsification activity of the biosurfactant solution containing lipase of KCL-l/pET-Lip improved better than wild type KCL-l. The soybean oil was most efficient carbon source and substrate for surface activity and emulsification activity of KCL-1/pET-Lip. The expression of lipase was confirmed by SDS-PAGE.

Purification and Characterization of Extracellular Lipase from Staphylococcus xylosus SC-22 (Staphylococcus xylosus SC-22가 생산하는 lipase의 정제 및 특성)

  • 성찬기;갈상완;이상원;최영주
    • Journal of Life Science
    • /
    • v.11 no.5
    • /
    • pp.457-463
    • /
    • 2001
  • A bacterial strain SC-22 which produced alkaline lipase was isolated from salf-fermented shrimps. Strains SC-22 was identified as Staphylococcus xylosus. An alkaline lipase excreted by Staphylococcus xylosus SC-22 was purified by ammonium sulfate predipitation and column chromatography on Sephadex G-100 and DEAE-Sephace. The specific activity of purified lipase was 756U/mg of protein with 17.2% yield. The approximate molecular weight of the purified enzyme was 47 kDa. The partially purified lipase preparation had and optimum temperature of 4$0^{\circ}C$, an optimum pH of 8.0, and a stable of 5~10. Lipase activities were enhanced by salt ions such as $Ca^{2+}$, $Mg^{2+}$,N $a^{2+}$ while inhibited remarkably by heavy metal ions, C $u^{2+}$ and P $b^{2+}$.EX> 2+/.

  • PDF

The Mode of Action and the Positional Specificity of Trichoporon cutaneum Lipase (Trichosporon cutaneum Lipase의 작용기작(作用機作) 및 위치특이성(位置特異性))

  • Kim, Seung-Yeol;Lee, Chun-Yung
    • Applied Biological Chemistry
    • /
    • v.23 no.1
    • /
    • pp.52-57
    • /
    • 1980
  • This study was conducted to clarify the mode of action and the positional specificity of Trichosporon cutaneum lipase during the course of hydrolysis of triolein and monoolein mixture by thin-layer chromatography. 1. The hydrolytic activity of the lipase to oleyl glycerides was in the order of triolein>diolein>monoolein. 2. Both of triolein and diolein were hydrolyzed by the lipase at high and almost the same rate. 3. The hydrolysis of monoolein by the lipase was very slow compared to the other two oleyl glycerides. 4. This lipase appeared to have a very low specificity toward the outer chains of triolein.

  • PDF

Effects of Mixing Protease and Lipase on Detergency (프로테아제와 리파제의 혼합에 따른 세척성의 변화)

  • 서수진;박정희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.2
    • /
    • pp.205-213
    • /
    • 2000
  • This study investigated the effect of mixing protease and lipase on detergency. The detergency of protein soiled, oil soiled and protein-oil soiled cloths and the relative hydrolytic activity of enzymes were examined. The protease-lipase added detergent solution was most effective for the removal of protein in protein-oil soiled cloths. This is because the lipase removed the protein that was physically bound to oil as well as the protease removed the protein. The protease added detergent solution was second effective, the lipase added detergent solution was third effective, and the detergent solution without protease and lipase was the least effective. The protease-lipase added detergent solution was also most effective in the oil removal from protein-oil soiled cloths. Unlike in protein removal, however, the protease added detergent solution was more effective in oil removal than the lipase added detergent solution. This is because the removal of oil bound to protein by protease was more effective than the removal of oil by lipase. In soiling-washing cycles, however, the effects of lipase increased, and as a result, the detergency of protease added detergent solution and the lipase added detergent solution became similar.

  • PDF

Isolation of an Acinetobacter junii SY-01 Strain Producing an Extracellular Lipase Enantioselectively Hydrolyzing Itraconazole Precursor, and Some Properties of the Lipase

  • Yoon, Moon-Young;Shin, Pyong-Kyun;Han, Ye-Sun;Lee, So-Ha;Park, Jung-Keug;Cheong, Chan-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.97-104
    • /
    • 2004
  • Water-sludge bacteria were screened to find a lipase enantioselectively hydrolyzing itraconazole precursor, which is well known as the starting material of antifungal drug agents. A bacterial strain was isolated and identified as Acinetobacter junii SY-01. After the strain was cultivated, the enzyme was purified 39.4-fold using ultrafiltration and gel filtration through a Sephadex G-100 chromatographic column and the activity yield was 34.9%. The molecular weight of the enzyme was about 40 kDa, as measured by SDS-PAGE, and the optimum pH was 7.0- 9.0 and stable at pH 6.0- 9.0. The optimum temperature was 45- $5^{\circ}C$, and 73% of the enzymes activity remained after incubation at 70% for 1 h. Enzyme activity was enhanced by gall powder, sodium deoxycholate, a cationic detergent Tween 80, and a non-ionic detergent Triton X-100, but was markedly inhibited by metal ions such as $Hg^{2+},Cu^{2+},Ni^{2+}/,Ca^{2+}$, and an anionic-surfactant sodium dodecylsulfate. The $K_{m}$ values for (R)- and (S)-enantiomers of the itraconazole precursor were 0.385 and 21.83 mM, respectively, and the $V_{max} values ($\mu$Mㆍmin^{-1}.)$ were 6.73 and 6.49, respectively. The acetyl group among the different acyl moieties of itraconazole precursor showed the highest enantioselectivity for the hydrolysis by the Acinetobacter junii SY-01 lipase, and the lipase from Acinetobacter junii SY-01 displayed better enantioselectivity than that of commercially available lipases and esterases.

A Study on the Characteristics and Purification of Bovine Milk Lipase by Affinity Chromatography (Affinity Chromatography에 의한 Milk Lipase의 분리정제와 특성조사)

  • Heo, Tae-Ryeon
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.762-768
    • /
    • 1988
  • The lipolytic enzyme of milk from hormone treated and non treated cows was isolated and purified, It was shown that the crude lipase extract from the milk before and after a hormone treatment of the cows was different in color, foaming properties, yield and specific activity. Final purification of the lipase system was achieved by affinity chromatography on Heparin-Sepharose CL-6B. The lipase bound by Heparin-Sepharose was then characterised. The pH-optimum of the purified enzyme was 8.5 for butteroil emulsion as a substrate and the optimum temperature was $30^{\circ}C$ respectively. The molecular weight. determined by SDS-polyacrylamidegel electrophoresis, was about 70,000. The activity increased by 10% hen 0.01% bovine serum albumin was added to the substrate. The results indicate the enzymes obtained by affinity chromatography from milk before and after hormone treatment had the similar characteristics. The second lipolytic active component that was not bound by Heparin-Sepharose must be the cause of spontaneous rancidity.

  • PDF

Purification and Properties of Alkaline Lipase from Pseudomonas sp. J-19 (Pseudomonas sp. J-19가 생산하는 Alkaline Lipase의 정제와 특성)

  • 신원철;정광성;유재흥;유주현
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.57-63
    • /
    • 1991
  • A strain J-19 was isolated from soil, produced lipase which has resistant against alkali and linear alkylbenzene sulfonate. The strain was identified as Pseudornonns sp.. The enzyme was purified by ammonium sulfate precipitation, DEAE-Sephadex and Sephadex G- 100 column chromatography. The specific activity of the purified enzyme was 35 unit/mg protein and the yield of enzyme activity was 17%. The purified enzyme showed a single band on polyacrylamide disc gel electrophoresis. Mo1ecul;tr weight of the purified enzyme was estimated about 36,000 by Sephadex GI00 gel filtration and SDS-polyacrylarnide gel electrophoresis. The optimum pH and temperature were pH 10.0 and $30^{\circ}C$, respectively. Activity of the purified enzyme was increased 2-fold by the addition of 0.1% linear alkylbenzene sulfonate and 2.5- fold by the addition of 0.05% Tide. This enzyme remained stable from pH 8.0 to 10.0 and stable up to $40^{\circ}C$.

  • PDF

Immobilization and Stability of Lipase from Mucor racemosus NRRL 3631

  • Adham, Nehad Zaki;Ahmed, Hanan Mostafa;Naim, Nadia
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.332-339
    • /
    • 2010
  • The lipase from Mucor racemosus NRRL 3631 was partially purified by fractional precipitation using 60% ammonium sulfate, which resulted in a 8.33-fold purification. The partially purified lipase was then immobilized using different immobilization techniques: physical adsorption, ionic binding, and entrapment. Entrapment in a 4% agar proved to be the most suitable technique (82% yield), as the immobilized lipase was more stable at acidic and alkaline pHs than the free enzyme, plus 100% of the original activity was retained owing to the thermal stability of the immobilized enzyme after heat treatment for 60 min at $45^{\circ}C$. The calculated half-lives (472.5, 433.12, and 268.5 min at 50, 55, and $60^{\circ}C$, respectively) and the activation energy (9.85 kcal/mol) for the immobilized enzyme were higher than those for the free enzyme. Under the selected conditions, the immobilized enzyme had a higher $K_m$ (11.11 mM) and lower $V_{max}$ (105.26 U/mg protein) when compared with the free enzyme (8.33 mM and 125.0 U/mg protein, respectively). The operational stability of the biocatalyst was tested for both the hydrolysis of triglycerides and esterification of fatty acids with glycerol. After 4 cycles, the immobilized lipase retained approximately 50% and 80% of its original activity in the hydrolysis and esterification reactions, respectively.

In vitro antioxidant property and α-glucosidase and pancreatic lipase inhibiting activities of Jeju camellia mistletoe (Korthalsella japonica (Thunb.) Engl.) extracts (제주 동백나무 겨우살이(Korthalsella japonica (Thunb.) Engl.)의 항산화 및 α-glucosidase와 pancreatic lipase 저해 활성)

  • Park, Eun Mi;Kim, Min Young
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.241-244
    • /
    • 2017
  • The antioxidant activity of various solvent extracts from Jeju camellia mistletoe (Korthalsella japonica (Thunb.) Engl.) was investigated using various in vitro assays as the 1,1-diphenyl-2-picrylhydrazyl radical scavenging, ferrous ion chelating and reducing power assays. Methanol and ethanol extracts showed the most potent antioxidant activity in all assays tested followed by water extract. The inhibitory effect of the Jeju camellia mistletoe extracts on pancreatic lipase and $\acute{a}$-glucosidase was also evaluated and the results showed that methanol and ethanol extracts markedly reduced both enzyme activities. Therefore, the methanol and ethanol extracts of Jeju camellia mistletoe is definitely worthy of further investigation for these beneficial effects on nutraceutical medicine.

Lipid and Lipase Distribution on Endosperm Cell of Panax ginseng Seed for the Electron Microscope (전자현미경을 이용한 인삼종자 배유세포내의 지질 및 지질가수분해 효소의 분포)

  • 유성철;노미전
    • Journal of Ginseng Research
    • /
    • v.16 no.2
    • /
    • pp.129-137
    • /
    • 1992
  • This study was carried out to investigate the localization of lipids and lipase activity with lipid staining and cytochemical technique in endosperm cells of Panax ginseng C.A. Meyer seed. In endosperm cells of indehiscent seed, protein bodies facing the umbiliform layer are different in electron density during the various degraded processes. Gradually, protein matrix near the cell wall was lysed and electron lucent inclusions appeared on umbiliform layer. The protein body with high electron density and the spherosome with low electron density were observed in endosperm cells. As a result of lipid staining, electron density of spherosome is more intense than those of the protein matrix within the protein body in endosperm cells of indehiscent seed. Free spherical spherosomes within the umbiliform layer have a high electron density. The spherical spherosomes were more electron densed and were uniform in comparison with the cytoplasmic proteinaceous granules in endosperm cells of seed with red seed coat. The major component of spherosome was determined to be lipid. Lipase activity occurs in the spherosome and near the endosperm cell wall facing the umbiliform layer. Cytochemical reaction products of lipase were observed in the spherosome membrane and in the inner regions of spherosome. After protein bodies were digested, lipase activities were observed in free spherosomes and near the cell wall of endosperm cells. Umbiliform layer composing of fibrillized wall and digested materials of the endosperm cell showed a little lipase reaction products.

  • PDF