• Title/Summary/Keyword: Linked Open Vocabularies

Search Result 4, Processing Time 0.022 seconds

Deploying Linked Open Vocabulary (LOV) to Enhance Library Linked Data

  • Oh, Sam Gyun;Yi, Myongho;Jang, Wonghong
    • Journal of Information Science Theory and Practice
    • /
    • v.3 no.2
    • /
    • pp.6-15
    • /
    • 2015
  • Since the advent of Linked Data (LD) as a method for building webs of data, there have been many attempts to apply and implement LD in various settings. Efforts have been made to convert bibliographic data in libraries into Linked Data, thereby generating Library Linked Data (LLD). However, when memory institutions have tried to link their data with external sources based on principles suggested by Tim Berners-Lee, identifying appropriate vocabularies for use in describing their bibliographic data has proved challenging. The objective of this paper is to discuss the potential role of Linked Open Vocabularies (LOV) in providing better access to various open datasets and facilitating effective linking. The paper will also examine the ways in which memory institutions can utilize LOV to enhance the quality of LLD and LLD-based ontology design.

Fully connecting the Observational Health Data Science and Informatics (OHDSI) initiative with the world of linked open data

  • Banda, Juan M.
    • Genomics & Informatics
    • /
    • v.17 no.2
    • /
    • pp.13.1-13.3
    • /
    • 2019
  • The usage of controlled biomedical vocabularies is the cornerstone that enables seamless interoperability when using a common data model across multiple data sites. The Observational Health Data Science and Informatics (OHDSI) initiative combines over 100 controlled vocabularies into its own. However, the OHDSI vocabulary is limited in the sense that it combines multiple terminologies and does not provide a direct way to link them outside of their own self-contained scope. This issue makes the tasks of enriching feature sets by using external resources extremely difficult. In order to address these shortcomings, we have created a linked data version of the OHDSI vocabulary, connecting it with already established linked resources like bioportal, bio2rdf, etc. with the ultimate purpose of enabling the interoperability of resources previously foreign to the OHDSI universe.

Ontology-lexicon-based question answering over linked data

  • Jabalameli, Mehdi;Nematbakhsh, Mohammadali;Zaeri, Ahmad
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.239-246
    • /
    • 2020
  • Recently, Linked Open Data has become a large set of knowledge bases. Therefore, the need to query Linked Data using question answering (QA) techniques has attracted the attention of many researchers. A QA system translates natural language questions into structured queries, such as SPARQL queries, to be executed over Linked Data. The two main challenges in such systems are lexical and semantic gaps. A lexical gap refers to the difference between the vocabularies used in an input question and those used in the knowledge base. A semantic gap refers to the difference between expressed information needs and the representation of the knowledge base. In this paper, we present a novel method using an ontology lexicon and dependency parse trees to overcome lexical and semantic gaps. The proposed technique is evaluated on the QALD-5 benchmark and exhibits promising results.

Change Acceptable In-Depth Searching in LOD Cloud for Efficient Knowledge Expansion (효과적인 지식확장을 위한 LOD 클라우드에서의 변화수용적 심층검색)

  • Kim, Kwangmin;Sohn, Yonglak
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.171-193
    • /
    • 2018
  • LOD(Linked Open Data) cloud is a practical implementation of semantic web. We suggested a new method that provides identity links conveniently in LOD cloud. It also allows changes in LOD to be reflected to searching results without any omissions. LOD provides detail descriptions of entities to public in RDF triple form. RDF triple is composed of subject, predicates, and objects and presents detail description for an entity. Links in LOD cloud, named identity links, are realized by asserting entities of different RDF triples to be identical. Currently, the identity link is provided with creating a link triple explicitly in which associates its subject and object with source and target entities. Link triples are appended to LOD. With identity links, a knowledge achieves from an LOD can be expanded with different knowledge from different LODs. The goal of LOD cloud is providing opportunity of knowledge expansion to users. Appending link triples to LOD, however, has serious difficulties in discovering identity links between entities one by one notwithstanding the enormous scale of LOD. Newly added entities cannot be reflected to searching results until identity links heading for them are serialized and published to LOD cloud. Instead of creating enormous identity links, we propose LOD to prepare its own link policy. The link policy specifies a set of target LODs to link and constraints necessary to discover identity links to entities on target LODs. On searching, it becomes possible to access newly added entities and reflect them to searching results without any omissions by referencing the link policies. Link policy specifies a set of predicate pairs for discovering identity between associated entities in source and target LODs. For the link policy specification, we have suggested a set of vocabularies that conform to RDFS and OWL. Identity between entities is evaluated in accordance with a similarity of the source and the target entities' objects which have been associated with the predicates' pair in the link policy. We implemented a system "Change Acceptable In-Depth Searching System(CAIDS)". With CAIDS, user's searching request starts from depth_0 LOD, i.e. surface searching. Referencing the link policies of LODs, CAIDS proceeds in-depth searching, next LODs of next depths. To supplement identity links derived from the link policies, CAIDS uses explicit link triples as well. Following the identity links, CAIDS's in-depth searching progresses. Content of an entity obtained from depth_0 LOD expands with the contents of entities of other LODs which have been discovered to be identical to depth_0 LOD entity. Expanding content of depth_0 LOD entity without user's cognition of such other LODs is the implementation of knowledge expansion. It is the goal of LOD cloud. The more identity links in LOD cloud, the wider content expansions in LOD cloud. We have suggested a new way to create identity links abundantly and supply them to LOD cloud. Experiments on CAIDS performed against DBpedia LODs of Korea, France, Italy, Spain, and Portugal. They present that CAIDS provides appropriate expansion ratio and inclusion ratio as long as degree of similarity between source and target objects is 0.8 ~ 0.9. Expansion ratio, for each depth, depicts the ratio of the entities discovered at the depth to the entities of depth_0 LOD. For each depth, inclusion ratio illustrates the ratio of the entities discovered only with explicit links to the entities discovered only with link policies. In cases of similarity degrees with under 0.8, expansion becomes excessive and thus contents become distorted. Similarity degree of 0.8 ~ 0.9 provides appropriate amount of RDF triples searched as well. Experiments have evaluated confidence degree of contents which have been expanded in accordance with in-depth searching. Confidence degree of content is directly coupled with identity ratio of an entity, which means the degree of identity to the entity of depth_0 LOD. Identity ratio of an entity is obtained by multiplying source LOD's confidence and source entity's identity ratio. By tracing the identity links in advance, LOD's confidence is evaluated in accordance with the amount of identity links incoming to the entities in the LOD. While evaluating the identity ratio, concept of identity agreement, which means that multiple identity links head to a common entity, has been considered. With the identity agreement concept, experimental results present that identity ratio decreases as depth deepens, but rebounds as the depth deepens more. For each entity, as the number of identity links increases, identity ratio rebounds early and reaches at 1 finally. We found out that more than 8 identity links for each entity would lead users to give their confidence to the contents expanded. Link policy based in-depth searching method, we proposed, is expected to contribute to abundant identity links provisions to LOD cloud.