• Title/Summary/Keyword: Link mechanism

Search Result 610, Processing Time 0.03 seconds

Modeling and Analysis of High Speed Serial Links (SerDes) for Hybrid Memory Cube Systems (하이브리드 메모리 큐브 (HMC) 시스템의 고속 직렬 링크 (SerDes)를 위한 모델링 및 성능 분석)

  • Jeon, Dong-Ik;Chung, Ki-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.4
    • /
    • pp.193-204
    • /
    • 2017
  • Various 3D-stacked DRAMs have been proposed to overcome the memory wall problem. Hybrid Memory Cube (HMC) is a true 3D-stacked DRAM with stacked DRAM layers on top of a logic layer. The logic die is mainly used to implement a memory controller for HMC, and it is connected through a high speed serial link called SerDes with a host that is either a processor or another HMC. In HMC, the serial link is crucial for both performance and power consumption. Therefore, it is important that the link is configured properly so that the required performance should be satisfied while the power consumption is minimized. In this paper, we propose a HMC system model included the high speed serial link to estimate performance accurately. Since the link modeling strictly follows the link flow control mechanism defined in the HMC spec, the actual HMC performance can be estimated accurately with respect to each link configuration. Various simulations are conducted in order to deduce the correlation between the HMC performance and the link configuration with regard to memory utilization. It is confirmed that there is a strong correlation between the achievable maximum performance of HMC and the link configuration in terms of both bandwidth and latency. Therefore, it is possible to find the best link configuration when the required HMC performance is known in advance, and finding the best configuration will lead to significant power saving while the performance requirement is satisfied.

A Medium Access Control Mechanism for Distributed In-band Full-Duplex Wireless Networks

  • Zuo, Haiwei;Sun, Yanjing;Li, Song;Ni, Qiang;Wang, Xiaolin;Zhang, Xiaoguang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5338-5359
    • /
    • 2017
  • In-band full-duplex (IBFD) wireless communication supports symmetric dual transmission between two nodes and asymmetric dual transmission among three nodes, which allows improved throughput for distributed IBFD wireless networks. However, inter-node interference (INI) can affect desired packet reception in the downlink of three-node topology. The current Half-duplex (HD) medium access control (MAC) mechanism RTS/CTS is unable to establish an asymmetric dual link and consequently to suppress INI. In this paper, we propose a medium access control mechanism for use in distributed IBFD wireless networks, FD-DMAC (Full-Duplex Distributed MAC). In this approach, communication nodes only require single channel access to establish symmetric or asymmetric dual link, and we fully consider the two transmission modes of asymmetric dual link. Through FD-DMAC medium access, the neighbors of communication nodes can clearly know network transmission status, which will provide other opportunities of asymmetric IBFD dual communication and solve hidden node problem. Additionally, we leverage FD-DMAC to transmit received power information. This approach can assist communication nodes to adjust transmit powers and suppress INI. Finally, we give a theoretical analysis of network performance using a discrete-time Markov model. The numerical results show that FD-DMAC achieves a significant improvement over RTS/CTS in terms of throughput and delay.

A Route Selection Algorithm using a Statistical Approach (통계적 기법을 이용한 경로 선택 알고리즘)

  • Kim, Young-Min;Ahn, Sang-Hyun
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.1
    • /
    • pp.57-64
    • /
    • 2002
  • Since most of the current route selection algorithms use the shortest path algorithm, network resources can not be efficiently used also traffics be concentrated on specific paths resulting in congestgion. In this paper we propose the statistical route selections(SRS) algorithm which adopts a statistical mechanism to utilize the network resource efficiently and to avoid congestion. The SRS algorithm handles requests on demand and chooses a path that meets the requested bandwidth. With the advent of the MPLS it becomes possible to establish an explicit LSP which can be used for traffic load balancing. The SRS algorithm finds a set of link utilizations for route selection, computes link weights using statistical mechanism and finds the shortest path from the weights. Our statistical mechanism computes the mean and the variance of link utilizations and selects a route such that it can reduce the variance and the number of congested links and increase the utilization of network resources. Throughout the simulation, we show that the SRS algorithm performs better than other route selection algorithms on several metrics like the number of connection setup failures and the number of congested links.

TCP Performance Control Method for the Wireless Link by using Extended ECN Mechanism (확장된 ECN 메커니즘을 사용한 무선 링크에서의 TCP성능 제어 기법)

  • Yun, You-Hun;Kim, Tai-Yun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.3
    • /
    • pp.336-343
    • /
    • 2002
  • Nowadays, after appearance of wireless network the existent internet environment is changing into the united wire/wireless network. But the present TCP regards all of the packet losses on transmission as the packet tosses due to the congestion. When it is applied on the wireless path, it deteriorates the end-to-end TCP throughput because it regards the packet loss by handoff or bit error as the packet loss by the congestion and it reduces the congestion window. In this paper, for solving these problems we propose the method that controls the performance of TCP on the wireless link by extending ECN which is used as a congestion control mechanism on the existent wire link. This is the method that distinguished the packet loss due to the congestion from due to bit error or handoff on the wireless network, so it calls the congestion control mechanism only when there occurs the congestion in the united wire/wireless network.

A Fast Route Selection Mechanism Considering Channel Statuses in Wireless Sensor Networks (무선 센서 네트워크에서 채널 상태를 고려하여 빠른 경로를 선택하는 기법)

  • Choi, Jae-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.7
    • /
    • pp.45-51
    • /
    • 2009
  • We have presented a routing mechanism that selects a route by considering channel statuses in order to fast transfer delay-sensitive data in WSNs (Wireless Sensor Networks). The existing methods for real-time data transfer select a path whose latency is the shortest or the number of hops is the smallest. An algorithm to select a real-time transfer path based on link error rates according to the characteristic of wireless medium was also suggested. However, the propagation delay and retransmission timeout affected by link error rates are shorter than channel assessment time and backoff time. Therefore, the mechanism proposed in this paper estimated the time spent in using a clear channel and sending out a packet, which is based on channel backoff rates. A source node comes to select a route with the shortest end-to-end delay as a fast transfer path for real-time traffic, and sends data along the path chosen. We found that this proposed mechanism improves the speed of event-to-sink data transfer by performing experiments under different link error and channel backoff rates.